云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 求二元函数极限的几种方法

求二元函数极限的几种方法

  • 62 次阅读
  • 3 次下载
  • 2025/6/16 0:21:09

x2y2122,令 lim2?lim?0x?y?t,知 ,

x?0x?y2x?011y?0y?0?y2x21lntlim(x2?y2)ln(x2?y2)?limtlnt?lim?limt??limt?0 x?0t?0t?01t?0t?01y?0?2tt故原式=e0?1;

2.12运用洛必达法则求二元函数的极限

例21 求

lim[sin(x2y?xy2)(xy)].

(x,y)?(0,0)解: 由第一章定理7洛必达法则可知

(x,y)?(0,0)lim[sin(x2y?xy2)(xy)]

??1[cos(x2y?xy2)(2xy?y2)x?cos(x2y?xy2)(2xy?y2)y](x,y)?(0,0)2xylim3lim[cos(x2y?xy2)(x?y)]?0 2(x,y)?(0,0)2.13利用定义求二元函数极限

例22 用定义验证:lim?x,y???1,1?x?2?xy?y2?3.

?解: x2?xy?y2?3??x2?1???y2?1???xy?1 =

?

?x?1??x?1???y?1??y?1???x?1?y??y?1?

=?x?1??x?y?1???y?1??y?2??x?1x?y?1?y?1y?2,

13

限定??0,则x?1?1,y?1?1. 从而

x?y?1?x?1?y?1?3?x?1?y?1?3?5,

y?2?y?1?3?y?1?3?4.

x2?xy?y2?3?5x?1?4y?1?5?x?1?y?1?.

???设?为任意正数,取??min?1,?,则当x?1??,y?1??,?x,y???2,1?时,就

?10?有x2?xy?y2?7?5?2??10???.

和一元函数一样,在使用函数定义求极限的时候,也伴随有放缩,这时要注意是对两个自变量的同时限制.

在二元函数的定义中,要求P(x,y)任意方式趋于P0(x0,y0)时,函数f(x,y)都无限接近于A.因此,很容易得到:若在f?x,y?的定义域内存在两条不同的连续曲线y?g?x?,y?h?x?,且当x?x0时,g(x)y0,h(x)y0,但函数式

f?x,y?沿着这两条曲线逼近?x0,y0?时的极限却不同,或者一个存在,另一个不

存在,则二元函数f?x,y?在此点不存在极限.

就这样,一道题有几种解法,哪个方法比较简单,比较合适就用哪个方法.

14

15

搜索更多关于: 求二元函数极限的几种方法 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

x2y2122,令 lim2?lim?0x?y?t,知 ,x?0x?y2x?011y?0y?0?y2x21lntlim(x2?y2)ln(x2?y2)?limtlnt?lim?limt??limt?0 x?0t?0t?01t?0t?01y?0?2tt故原式=e0?1; 2.12运用洛必达法则求二元函数的极限 例21 求lim[sin(x2y?xy2)(xy)]. (x,y)?(0,0)解: 由第一章定理7洛必达法则可知 (x,y)?(0,0)lim[sin(x2y?xy2)(xy)] ??1[cos(x2y?xy2)(2xy?y2)x?cos(x2y?xy2)(2xy?y2)y](x,y)?(0,0)2xylim3lim[cos(x2y?xy2)(x?y)

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com