当前位置:首页 > 组合数学习题答案
习题二
2.1 证明:在一个至少有2人的小组中,总存在两个人,他们在组内所认识的人数相同。 证明:
假设没有人谁都不认识:那么每个人认识的人数都为[1,n-1],由鸽巢原理知,n个人认识的人数有n-1种,那么至少
有2个人认识的人数相同。
假设有1人谁都不认识:那么其他n-1人认识的人数都为[1,n-2],由鸽巢原理知,n-1个人认识的人数有n-2种,那么至少有2个人认识的人数相同。
假设至少有两人谁都不认识,则认识的人数为0的至少有两人。 2.2 任取11个整数,求证其中至少有两个数的差是10的整数倍。
证明:对于任意的一个整数,它除以10的余数只能有10种情况:0,1,…,9。现在有11个整数,由鸽巢原理知,至少有2个整数的余数相同,则这两个整数的差必是10的整数倍。
2.3 证明:平面上任取5个坐标为整数的点,则其中至少有两个点,由它们所连线段的中点的坐标也是整数。 2.3证明:
有5个坐标,每个坐标只有4种可能的情况:(奇数,偶数);(奇数,奇数);(偶数,偶数);(偶数,奇数)。由鸽巢原理知,至少有2个坐标的情况相同。又要想使中点的坐标也是整数,则其两点连线的坐标之和为偶数。因为 奇数+奇数 = 偶数 ; 偶数+偶数=偶数。因此只需找以上2个情况相同的点。而已证明:存在至少2个坐标的情况相同。证明成立。
2.4 一次选秀活动,每个人表演后可能得到的结果分别为“通过”、“淘汰”和“待定”,至少有多少人参加才能保证必
有100个人得到相同的结果? 证明:
根据推论2.2.1,若将3*(100-1)+1=298个人得到3种结果,必有100人得到相同结果。
2.5 一个袋子里装了100个苹果、100个香蕉、100个橘子和100个梨。那么至少取出多少水果后能够保证已经拿出20个
相同种类的水果? 证明:
根据推论2.2.1,若将4*(20-1)+ 1 = 77个水果取出,必有20个相同种类的水果。
2.6 证明:在任意选取的n+2个正整数中存在两个正整数,其差或和能被2n整除。(书上例题2.1.3)
证明:对于任意一个整数,它除以2n的余数显然只有2n种情况,即:0,1,2,…,2n-2,2n-1。而现在有任意给定的n+2个整数,我们需要构造n+1个盒子,即对上面2n个余数进行分组,共n+1组: {0},{1,2n-1},{2,2n-2},{3,2n-3},…,{n-1,n+1},{n}。
根据鸽巢原理,n+2个整数,必有两个整数除以2n落入上面n+1个盒子里中的一个,若是{0}或{n}则说明它们的和及差都能被2n整除;若是剩下n-1组,因为一组有两个余数,余数相同则它们的差能被2n整除,不同则它们的和能被2n整除。证明成立。
2.7 一个网站在9天中被访问了1800次,证明:存在连续的3天,这个网站的访问量超多600次。 证明:
设网站在9天中访问数分别为a1,a2,...,a9 其中a1+a2+...+a9 = 1800, 令a1+a2+a3 = b1,a4+a5+a6 = b2,a7+a8+a9 = b3
因为(b1+b2+b3)/3 >= 600 由推论2.2.2知,b1,b2,b3中至少有一个数大于等于600。 所以存在有连续的三天,访问量大于等于600次。
2.8 将一个矩形分成5行41列的网格,每个格子涂1种颜色,有4种颜色可以选择,证明:无论怎样涂色,其中必有一
个由格子构成的矩形的4个角上的格子被涂上同一种颜色。
证明:首先对一列而言,因为有5行,只有4只颜色选择,根据鸽巢原理,则必有两个单元格的颜色相同。另外,每列中两个单元格的不同位置组合有
()52=10种,这样一列中两个同色单元格的位置组合共有10*4=40种情况。
而现在共有41列,根据鸽巢原理,无论怎样涂色,则必有两列相同,也就是必有一个由格子构成的矩形的4个角上的格子是同一颜色。
2.9 将一个矩形分成(m+1)行m()m+1+1列的网格每个格子涂1种颜色,有m种颜色可以选择,证明:无论怎么涂色,2其中必有一个由格子构成的矩形的4个角上的格子被涂上同一种颜色。 证明:
(1)对每一列而言,有(m+1)行,m种颜色,有鸽巢原理,则必有两个单元格颜色相同。 (2)每列中两个单元格的不同位置组合有
()m+12种,这样一列中两个同色单元格的位置组合共有
()m+1m种情况 2 (3)现在有m+1+1(m2)列,根据鸽巢原理,必有两列相同。证明结论成立。
2.10 一名实验员在50天里每天至少做一次实验,而实验总次数不超过75。证明一定存在连续的若干天,她正好做了24
次实验。
证明:令b1,b2,...,b50 分别为这50天中他每天的实验数,并做部分和 a1 = b1,a2 = b1+b2 ,。。
a50 = b1+b2+...+b50 .
由题,bi>=1(1<=i<=50)且a50<=75 所以 1<=a1 考虑数列 a1,a2,...,a50,a1+24,a2+24,a50+24,它们都在1与75+24=99之间。 由鸽巢原理知,其中必有两项相等。由(*)知,a1,a2,...,a50互不相等,从而a1+24,...a50+24 也互不相等,所以一定存在1<=i 2.11 证明:从S={1,3,5,…,599}这300个奇数中任意选取101个数,在所选出的数中一定存在2个数,它们之间最多差4。 证明: 将S划分为{1,3,5},{7,9,11}……,{ 595,597,599}共100组,由鸽巢原理知任意选取101个数中必存在2个数来自同一组,即其差最多为4. 2.12 证明:从1~200中任意选取70个数,总有两个数的差是4,5或9。 证明:设这70个数为 a1,a2,…,a70, a1+4,a2+4,…,a70+4, a1+9,a2+9,…,a70+9, 取值范围209,共210个数 b+bi+2+...+bj 2.13 证明:对于任意大于等于2的正整数n,都有R(2,n)=n。 2.13证明: 要证R(2,n)= n,用红蓝两色涂色Kn的边。 当n=2时,R(2,2)=2,因为不管用红还是蓝色都是完全二边形。 假设当n=k时 成立 ,即存在R(2,k)=k(没有一条红边,只有蓝边), 当n=k+1时,R(2,k+1) 若无红边,要想有完全k+1边形,必得有k+1个点,即R(2,k+1)=k+1。证明成立。 习题三 3.1 有10名大学生被通知参加用人单位的面试,如果5个人被安排在上午面试,5个人被安排在下午面试,则有多少种 不同的安排面试的顺序? 解:上午的5个人全排列为5! 下午的5个人全排列为5! 5所以有C10*5!*5!?10!,共14400种不同的安排方法。 3.2 某个单位内部的电话号码是4位数字,如果要求数字不能重复,那么最多可有多少个号码?如果第一位数字不能是0, 那么最多能有多少个电话号码? 解:由于数字不能重复,0-9共10个数字,所以最多有10*9*8*7=5040种号码;若第一位不能是0,则最多有9*9*8*7=4536种号码。 3.3 18名排球运动员被分成A,B,C三个组,使得每组有6名运动员,那么有多少种分法?如果是分成三个组(不可区别), 使得每组仍有6名运动员,那么有多少种分法? 666解:1)C18种 *C12*C6 2) 666/3! C18*C12*C63.4 教室有两排,每排8个座位。现有学生14人,其中的5个人总坐在前排,4个人总坐在后排,求有多少种方法将学 生安排在座位上? 5解:前排8个座位,5人固定,共C8*5!种方法;后排8个座位,4人固定,共C84*4!种方法;前排和后排还剩7个 555座位,由剩下的5人挑选5个座位,共C7*C84*C7*5!*5!*4!种安排方法。 *5!种方法;则一共有C8 3.5 将英文字母表中的26个字母排序,要求任意两个元音字母不能相邻,则有多少种排序方法? 解:先排21个辅音字母,共有21! 再将5个元音插入到22个空隙中,P22 故所求为21!?P22 (插入法) 3.6 有6名先生和6名女士围坐一个圆桌就餐,要求男女交替就坐,则有多少种不同的排坐方式? 解:6男全排列6!;6女全排列6!;6女插入6男的前6个空或者后6个空,即女打头或男打头6!*6!*2;再除以围圈重复得(6!*6!*2)/12=6!*5! 或 55男6的圆排列为5!,对每个男的排列,女要在他们之间的6个位置,进行线性排列6!(而不是5!)。 (圆排列可以通过线性排列来解决) 3.7 15个人围坐一个圆桌开会,如果先生A拒绝和先生B和C相邻,那么有多少种排坐方式? 解:15人圆排列14!; A与B相邻有2*14!/14=2*13!; A与C相邻有2*14!/14=2*13!; A与BC同时相邻有2*13!/13=2*12!; 于是A不与B、C相邻的坐法共14!- 2*13!- 2*13!+ 2*12!(用到了容斥原理) 3.8 确定多重集M?{3?a,4?b,5?c}的11-排列数? 解:M的11排列=[M-{a}]的11排列+[M-{b}]的11排列+[M-{c}]的11排列,即当然了,容斥原理,生成函数也可以做。 3.9 求方程x1?解:令y11!11!11!=27720 ??2!4!5!3!3!5!3!4!4!x2?x3?x4?20,满足x1?2,x2?0,x3?5,x4??1的整数解的个数。 1?x1?2?0,y2?x2?0,y3?x3?5?0,y4?x4?1?0 则有y?14?4?1??17??17?,由定理3.3.3,解个数为: ?y?y?y?141234?14???14???3??680???????n?r?1??20?4?1??17?????2380 ?r????4?????4?3.10 书架上有20卷百科全书,从中选出4卷使得任意两本的卷号都不相邻的选法有多少种? 解:n=20,r=4, 证明见38页。 3.11 确定(2x-3y)5展开式中x4y和x2y4的系数。 解:1)x4y:C54*(2x)4*(?3y)1,系数为-240 2)x 2y4:系数为0。 3.12 确定(1+x)-5展开式中x4的系数。 解:(1?x)?n?n?r?1?r,n=5,r=4,则系数为4?5?4?1???(?1)?x(?1)??70 ??r?0?r??4??r3.13 确定(x +2y+3z)8展开式中x4y2x2的系数。 解: 8!*22*32?15120 4!*2!*2!?n??n?1??n?2??n?k??n?k?1?????????????0??1??2??k?????k??,其中n,k为正整数。 ??????????解:右边?n?k?1?是(n+k+1)元集合S?{a1,a2,...,an?k?1}上k个元素子集的个数,这些子集可分为以下k+1类: 3.14 证明组合等式:???k??第1类:k元子集中不含a1的子集有 个; ?n?k???k????
共分享92篇相关文档