云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 2018年高考数学分类汇编复数、向量等7个板块试题及答案详解

2018年高考数学分类汇编复数、向量等7个板块试题及答案详解

  • 62 次阅读
  • 3 次下载
  • 2025/6/15 22:50:46

则的值为( )B.﹣9 C.﹣6 D.0

A.﹣15

【解答】解:不妨设四边形OMAN是平行四边形, 由OM=1,ON=2,∠MON=120°,知∴=﹣3

=

=3

﹣3+3

=﹣3)?

+3

=2,

=2

=(﹣3+3

?

=﹣3×12+3×2×1×cos120° =﹣6. 故选:C.

11、(2018年高考天津卷理科第8题)

(5分)如图,在平面四边形ABCD中,AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1.若点E为边CD上的动点,则

的最小值为( )

A.

B. C.

D.3

【解答】解:如图所示,以D为原点,以DA所在的直线为x轴, 以DC所在的直线为y轴,

过点B做BN⊥x轴,过点B做BM⊥y轴, ∵AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1, ∴AN=ABcos60°=,BN=ABsin60°=∴DN=1+=,

5

∴BM=, ∴CM=MBtan30°=∴DC=DM+MC=

, ,

),C(0,

),

∴A(1,0),B(,设E(0,m), ∴∴当m=

=(﹣1,m),

=+m2﹣

=(﹣,m﹣m=(m﹣

),0≤m≤

=(m﹣

, )2+

)2+﹣

时,取得最小值为

故选:A.

12、(2018年高考浙江卷第9题)

(4分)已知,,是平面向量,是单位向量.若非零向量与的夹角为满足A.

﹣4?+3=0,则|﹣|的最小值是( ) ﹣1 B.

+1

C.2

D.2﹣

,向量

【解答】解:由∴(

)⊥(

﹣4?+3=0,得), ,

如图,不妨设

则的终点在以(2,0)为圆心,以1为半径的圆周上,

6

又非零向量与的夹角为上. 不妨以y=,则的终点在不含端点O的两条射线y=(x>0)

为例,则|﹣|的最小值是(2,0)到直线

的距离减1.

即.

故选:A.

7

2018年高考数学分类汇编----线性规划

1、(2018年高考全国卷1文科第14题) (5分)若x,y满足约束条件

,则z=3x+2y的最大值为 6 .

【解答】解:作出不等式组对应的平面区域如图: 由z=3x+2y得y=﹣x+z, 平移直线y=﹣x+z,

由图象知当直线y=﹣x+z经过点A(2,0)时,直线的截距最大,此时z最大, 最大值为z=3×2=6, 故答案为:6

2、(2018年高考全国卷1理科第13题)(5分)若x,y满足约束条件

,则

z=3x+2y的最大值为 6 .

【解答】解:作出不等式组对应的平面区域如图: 由z=3x+2y得y=﹣x+z, 平移直线y=﹣x+z,

由图象知当直线y=﹣x+z经过点A(2,0)时,直线的截距最大,此时z最大,

8

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

则的值为( )B.﹣9 C.﹣6 D.0 A.﹣15 【解答】解:不妨设四边形OMAN是平行四边形, 由OM=1,ON=2,∠MON=120°,知∴=﹣3=﹣=3﹣3+3 =﹣3)? +3=2, ,=2, =(﹣3+3?=﹣3×12+3×2×1×cos120° =﹣6. 故选:C. 11、(2018年高考天津卷理科第8题) (5分)如图,在平面四边形ABCD中,AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1.若点E为边CD上的动点,则的最小值为( ) A. B.

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com