云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > [备考大全]中考数学总复习资料2015

[备考大全]中考数学总复习资料2015

  • 62 次阅读
  • 3 次下载
  • 2025/6/15 22:24:16

第五章:解直角三角形

知识点:

一、锐角三角函数:在直角三角形ABC中,∠C是直角,如图5-1

a cb 2、余弦:把锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA?

ca 3、正切:把锐角A的对边与邻边的比叫做∠A的正切,记作tanA?

bb 4、余切:把锐角A的邻边与对边的比叫做∠A的余切,记作cotA?

a1 说明:由定义可以看出tanA·cotA=l(或写成tanA?)

cotA 1、正弦:把锐角A的对边与斜边的比叫做∠A的正弦,记作sinA? 5、锐角三角函数:锐角A的正弦、余弦、正切、余切都叫做∠A的锐角三角函数 说明:锐角三角函数都不能取负值。 0< sinA< l; 0<cosA<;l

6、锐角的正弦和余弦之间的关系任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值。

即sinA=cos(90°一 A)=cosB;cosA=sin(90°一A)=sinB

7、锐角的正切和余切之间的关系任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值。

即tanA=cot(90°一 A)=cotB;cotA=tan(90°-A)= tanB 说明:式中的90°一A = B 。 8、三角函数值的变化规律

(1)当角度在0°— 90°间变化时,正弦值(正切值随着角度的增大(或减小)而增大(或减小)

(2)当角度在0°—90°间变化时,余弦值(余切值)随着角度的增大(或减小)而减小(或增大)。

9、同角三角函数关系公式

22 (1)sinA?cosB?1;(2)tanA?1sinA

;(3) tanA=

cosAcotA10.一些特殊角的三角函数值

25

二、解直角三角形

由直角三角形中,除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形。

若直角三角形ABC中,∠C=90°,那么A、B、C,a,b,c中除∠C=90°外,其余5个元素之间有关系:

(l)a?b?c;(2)∠A十∠B=90°; (3)sinA?222abab;cosA?;tanA?;cotA? ccba 所以,只要知道其中的2个元素(至少有一个是边),就可以求出其余3个未知

数。

例如Rt△ABC中,∠C=90°,且∠A=30°,a=5,

a1?sinA?sin30???c?10 c2b3? ?sinB?sin60??b?53

c2?? A?B?90?B?60 ?b?53,c?10,B?60?

则由:

三、应用举例

是实际问题中的解直角三角形,或者说用解直角三角形的方法解决实际问题。

例如一杆AB直立地面,从D点看杆顶A,仰角为60°,从C点看杆顶A,仰角为30°(如图5~2)若CD长为10米,求杆AB的高。 解:设AB=x 即tan60??xx?,tan30?, BD10?BD??x?3BD即? ??3?10?BD13x?10?x,2x?103,∴x?53

3即杆高约8.66米,应用题中要注意: (1)仰角,俯角见图5-3

(2)跨度、中柱:如房屋顶人字架跨度为AB,见图5—4

(3)深度、燕尾角

26

如燕尾槽的深度,见图5—5

(4)坡度、坡角

i? 见图5一6坡度i=7坡度的垂直高度h水平宽度l,

h?tana(a叫坡角) l第六章:圆

知识点: 一、圆

1、圆的有关性质

在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA叫半径。 由圆的意义可知:

圆上各点到定点(圆心O)的距离等于定长的点都在圆上。

就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。心的距离小于半径的点的集合。

圆的外部可以看作是到圆心的距离大于半径的点的集合。连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点间的部分叫圆弧,简称弧。

圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。由弦及其所对的弧组成的圆形叫弓形。 圆心相同,半径不相等的两个圆叫同心圆。 能够重合的两个圆叫等圆。 同圆或等圆的半径相等。

在同圆或等圆中,能够互相重合的弧叫等弧。 二、过三点的圆 l、过三点的圆

过三点的圆的作法:利用中垂线找圆心 定理不在同一直线上的三个点确定一个圆。

经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。 2、反证法

反证法的三个步骤:

①假设命题的结论不成立;

②从这个假设出发,经过推理论证,得出矛盾;

③由矛盾得出假设不正确,从而肯定命题的结论正确。 例如:求证三角形中最多只有一个角是钝角。 证明:设有两个以上是钝角 则两个钝角之和>180°

27

与三角形内角和等于180°矛盾。

∴不可能有二个以上是钝角。 即最多只能有一个是钝角。 三、垂直于弦的直径

圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。 推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。 弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。

推理2:圆两条平行弦所夹的弧相等。 四、圆心角、弧、弦、弦心距之间的关系 圆是以圆心为对称中心的中心对称图形。

实际上,圆绕圆心旋转任意一个角度,都能够与原来的图形重合。 顶点是圆心的角叫圆心角,从圆心到弦的距离叫弦心距。

定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。

推理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等。 五、圆周角

顶点在圆上,并且两边都和圆相交的角叫圆周角。

推理1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

推理2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。 推理3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 由于以上的定理、推理,所添加辅助线往往是添加能构成直径上的圆周角的辅助线。 六、圆的内接四边形

多边形的所有顶点都在同一个圆上,这个多边形叫圆内接多边形,这个圆叫这个多边形的外接圆

定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。 例如图6—1,连EF后,可得: ∠DEF=∠B

∠DEF+∠A=180°

∴∠A+∠B=18ry ∴BC∥DA

七、直线和圆的位置关系

1、直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫圆的割线

直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫圆的切线,唯一的公共点叫切点。

直线和圆没有公共点时,叫直线和圆相离。 2、若圆的半径为r,圆心到直线的距离为d,则: 直线和圆相交?d<r;直线和圆相切?d=r;直线和圆相离?d>r;直线和圆相交?d<r

例如:图6-2中,直线与圆O相割,有:r>d 图6-3中,直线与圆O相切,r=d

28

搜索更多关于: [备考大全]中考数学总复习资料2015 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

第五章:解直角三角形 知识点: 一、锐角三角函数:在直角三角形ABC中,∠C是直角,如图5-1 a cb 2、余弦:把锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA? ca 3、正切:把锐角A的对边与邻边的比叫做∠A的正切,记作tanA? bb 4、余切:把锐角A的邻边与对边的比叫做∠A的余切,记作cotA? a1 说明:由定义可以看出tanA·cotA=l(或写成tanA?) cotA 1、正弦:把锐角A的对边与斜边的比叫做∠A的正弦,记作sinA? 5、锐角三角函数:锐角A的正弦、余弦、正切、余切都叫做∠A的锐角三角函数 说明:锐角三角函数都不能取负值。 0< sinA< l; 0<cosA<;l

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com