当前位置:首页 > 最新2020年中考数学复习 第八章 统计与概率 第一节 统计同步训练
根据以上信息,回答下列问题: (1)直接写出图中a,m的值;
(2)分别求网购与视频软件的人均利润;
(3)在总人数和各款软件人均利润都保持不变的情况下,能否只调整网购与视频软件的研发与维护人数,使总利润增加60万元?如果能,写出调整方案;如果不能,请说明理由.
参考答案
1.C 2.B 3.D 4.D 5.D 6.D 7.A 8.C 9.B 10.D 11.C 12.B 13.B 14.C 15.丙 16.5 17.= 18.解: (1)120;
(2)1名续保人本年度的平均保费为
6 000×(100×0.85+80×1+40×1.25+40×1.5+30×1.75+10×2)
300=6 950(元).
19.解:(1)样本容量16万;
2017年前三季度居民人均消费可支配收入平均数=17 735×115%=20 395.25≈20 395(元), 所以2017年前三季度居民人均消费可支配收入平均数为20 395元. (2)8.3%×360°=29.88°≈30°, 所以用于医疗保健所占圆心角度数为30°.
(3)1-8.3%-2.6%-29.2%-6.8%-6.2%-13.6%-11.2%=0.221, 0.221×11 423≈2 524(元),
所以2017年前三季度居民人均消费支出中用于居住的金额为2 524元.
9
20.解:(1)78.75;
(2)B 该学生的A课程成绩小于全班A课程的中位数,B课程成绩大于全班B课程的中位数 10+18+8
(3)300×=180(人).
60
即估计A课程成绩超过75.8分的人数为180人. 21.解: (1)30,19%. (2)B(或70<x≤80).
(3)本次全部测试成绩的平均数为: 2 581+5 543+5 100+2 796
=80.1(分).
20022.解: (1)160,54.
(2)喜欢“科学探究”的人数:160-24-32-48=56(人). 补图略.
56
(3)840×=294(名).
160
答:该校七年级840名学生中,估计最喜欢“科学探究”的学生人数为294名. 23.解: (1)a=100-(10+40+30)=20, ∵软件总利润为1 200÷40%=3 000(万元), ∴m=3 000-(1 200+560+280)=960;
960
(2)网购软件的人均利润为=160(万元/人),
20×30V0
视频软件的人均利润=140(万元/人);
20×20%
(3)设调整后网购软件的人数为x人,视频的人数为(10-x)人,根据题意,得:1200+280+160x+140(10-x)=3000+60, 解得x=9,
即安排9人负责网购、安排1人负责视频可以使总利润增加60万元.
10
共分享92篇相关文档