当前位置:首页 > 压缩感知
principles and optimally sparse decompositions. Foundations of Computational Mathematics, 2006, 6(2): 227-254.
[50] D. L. Donoho. Compressed sensing. IEEE Trans. on Information Theory. 2006, 52(4):1289 -1306.
[51] D. Needell, R. Vershynin. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit. http://www.math.ucdavis.edu/~vershynin/papers/ ROMP-stability.pdf.
[52] B. Kashin. The widths of certain finite dimensional sets and classes of smooth functions. Izv Akad Nauk SSSR. 1977, 41(2): 334-351.
[53] E. J. Candès, T. Tao. Near optimal signal recovery from random projections:Universal encoding strategies? IEEE Trans. on Information Theory. 2006, 52(12): 5406-5425.
[54] B. Hern. Robustness of compressed sensing in sensor networks.http://txspace.tamu.edu/bitstream/handle/1969.1/6915/BrettHern_UndergraduateThesis.pdf?sequence=1
[55] D. Takhar, V. Bansal, M. Wakin, etc. A compressed sensing camera: New theory and an implementation using digital micromirrors. SPIE Electronic Imaging: Computational Imaging. San Jose. 2006.
[56] M. Duarte, M. Davenport, D. Takbar, etc. Si ngle-pixel imaging via compressive sampling. IEEE Signal Processing Magazine, 2008, 25(2): 82-91.
[57] J. Trzasko, A. Manduca. Highly undersampled magnetic
resonance image reconstruction via homotopic ell-0 minimization. IEEE Transactions on Medical Imaging, 20 09, 28(1): 106-121.
[58] W. Bajwa, J. Haupt, A. Sayeed, etc. Compressive wireless sensing. Int. Conf. on Information Processing in Sensor Networks (IPSN), Nashville, Tennessee, 2006: 134-142.
[59] H. Rauhut, K. Schass, P. Vandergheynst. Compressed sensing and redundant dictionaries. IEEE Trans. on Information Theory. 2008, 54(5): 2210-2219.
[60] R. Baraniuk, P. Steeghs, Compressive radar imaging. IEEE Radar Conference, Waltham, Massachusetts, April 2007.
[61] M. Sheikh, O. Milenkovic, R. Baraniuk. Designing compressive sensing DNA microarrays. IEEE Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), St. Thomas, U.S. Virgin Islands, December 2007.
[62] S. Kirolos, J. Laska, M. Wakin etc. Analog-to-information conversion via random demodul- ation. Proceedings of the IEEE Dallas Circuits and Systems Workshop (DCAS’06 ). Dallas, Texas. 2006.
[63] J. Laska, S. Kirolos, Y. Massoud etc. Random sampling for analog-to-information conversion of wideband signals. Proceedings of the IEEE Dallas Circuits and Systems Workshop (DCAS’06 ). Dallas, Texas, 2006.
[64] P. Borgnat, P. Flandrin. Time-frequency locali zation from
sparsity constr aints. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP ). Piscataway: Institute of Electrical and Electronics Engineers Inc., 2008: 3785-3788.
[65] R. Willett, M. Gehm, D. Brady. Multiscale reconstruction for computational spectral imaging. Proceedings of SPIE-IS and T Electronic Imaging-Computational Imaging. Bellingham: SPIE, 2007, 64980L.
[66] J. W. Ma, F. X. L. Dimet. Deblurring from highly incomplete measurements for remote sensing. IEEE Trans. on Geoscience and Remote Sensing. 2009, 3: 792-802.
[67] M. Lustig, D. L. Donoho, J. M. Pauly. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magnetic Resonance in Medicine. 2007, 58(6): 1182-1195.
[68] G. Quer, R. Masiero, D. Munaretto, etc. On the Interplay Between Routing and Signal Representation for Compressive Sensing in Wireless Sensor Networks. Information Theory and Applications Workshop (ITA 2009), San Diego, CA.
[69] W. Bajwa, J. Haupt, A. Sayeed, etc. Compressive wireless sensing. Proceedings of the fifth International Conference on Information Processing in Sensor Networks, IPSN '06. New York: Association for Computing Machinery. 2006: 134-142.
[70] E. Candès, T. Tao. Decoding by linear programming. IEEE Trans. on Information Theory. 2005, 51(12): 4203-4215.
[71] E Candès, M RudelsonT Tao. Error correction via linear programming. http://www.math. ucla.edu/~tao/preprints/FOCS05.pdf
[72] M. Rudelson, R. Vershynin. Geometric approach to error correcting codes and reconstruction of signals. Int. Mathematical Research Notices, 2005, 64: 4019-4041.
[73] D. Shamsi, P. Boufounos, F. Koushanfar. Noninvasive leakage power tomography of integrated circuits by compressive sensing. Proceeding of the thirteenth international symposium on Low power electronics and design, August 11-13, 2008, Bangalore, India.
[74] J. Bobin, J. Starck, R. Ottensamer. Compressed sensing in astronomy. Applied Mathematics and Computation, 2008, 206 (2): 980-988
[75] D. H. Liu, G. M. Shi, D. H. Gao. A new method for signal sparse decomposition, ISPACS'07, Xiamen, China, 2007: 45-48.
[76] G. M. Shi, J. Lin, X. Y. Chen, F. Qi, et al. UWB Echo Signal Detection With Ultra-Low Rate Sampling Based on Compressed Sensing, IEEE Transactions on Circuits and Systems II, 2008, 55(4): 379-383.
[77] L. J. Wang, X. L. Wu, G. M. Shi. A Compressive Sensing Approach of Multiple Descriptions for Network Multimedia Communicatio n. 2008 IEEE 10th Internatio nal Workshop on Multimedia Signal Processing (MMSP’08), Queensland, Australi a. Institute of Electrical and Electronics Engineers Computer Society. 2008:
共分享92篇相关文档