云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 结构化学 第一章练习题答案..

结构化学 第一章练习题答案..

  • 62 次阅读
  • 3 次下载
  • 2025/6/16 9:29:25

现代结构化学 2010.9

第一章 量子力学基础知识

练习题

1.(北师大95)微观粒子体系的定态波函数所描述的状态是( B ) A. 波函数不随时间变化的状态 B.几率密度不随时间变化的状态 C. 自旋角动量不随时间变化的状态 D. 粒子势能为零的状态

2.(北大93)?是描述微观体系(运动状态)的波函数。

3.(北师大20000)若???1?ei??1,其中?为实常数,且?1已归一化,求

?的归一化常数。

解:设??A(?1?ei??1)是归一化的,

?2i?i?*2?i?i???d??A(??e?)(??e?)d??A(2?e?e)?1 111??1A?12?e?i??ei??12?2cos?

4.(东北师大99)已知一束自由电子的能量值为E,写出其德布罗意波长表达式,并说明可用何种实验来验证(10分)

??hhh?? E=1/2mv2 (mv)2=2mE 电子衍射实验 Pmv2mE5.(中山97)(北大98)反映实物粒子波粒二象性的关系式为(E?hv,P?h?)

l26.(中山97)一维势箱长度为l,则基态时粒子在()处出现的几率密度

1

最大。

(中山2001)一维势箱中的粒子,已知??(

l3l(2n?1)l,,.......,)处出现的几率密度最大。 2n2n2n2n?x,则在sinll解法1:ψ的极大和极小在ψ2中都为极大值,所以求ψ的极值(包括极大和极小)位置就是几率密度极大的位置。

2n?x??sinll

2n?n?x?'? cos?0llln?x(2m?1)?? m?0,1,2,3...l2 (2m?1)lx? m?0,1,2,3...2n ?0?x?l ?(2m?1)?2n

2

解法2:

22n?x2n?x2P???sin??sin 几率密度函数

ll ll求极值:(sin2α=2Sinα?cosα)

2n?xn?xn?P'?2sincos llll2n?2n?x?2sin?0ll2n?x2n?xsin?0 =m? m?0,1,2,3,...llmlx?2n2xm = ?0?x?l ?m?2nlnm?0,2n为边界,不是极值点m?1为极大值,m?2为极小值...ml?极大值位置为 x? m?1,3,5...(2n?1)2n3h27.(北大93)边长为l的立方势箱中粒子的零点能是(E?) 28ml8.(北大94)两个原子轨道?1和?2互相正交的数学表达式为(??1??2d??0) 9. 一维谐振子的势能表达式为V?kx2,则该体系的定态薛定谔方程中的哈密顿算符为( D)

12?2212?2212??kx C. ???kx A. kx B.

22m22m212?2d212?2d212?kx E. ??kx D. ?222mdx22mdx2

3

?,A?和A?对任意f的作用为 10.(北师大04年) 设算符A1,A234??f?A1?f?2f,A?f?df,A?f?f?f, f,A234dx?,A?) 指出哪些算符为线性算符(A2311.?1,?2是某原子的可能状态,下列哪些组合也是该原子的可能状态? a. ?1??2 b. ?1??2 c . ?1??2 d. ?1??2 (a, d)

12. 写出一个电子在长度为a的一维势箱中运动的Hamilton算符.

?2d? H?? 22mdx213.(北师大02年)

(1) 给出用原子单位表示的下列算符表达式

222???2?2?2?P?2?P??PP??(2?2?)(a)电子的动量平方算符为 xyz?x?y?z2(b) 原子核看作不动,He原子的Hamilton算符

???1?2?1?2?2?2?1 H1222ra1ra2r12???i?(x??y?)Mz?xpy?ypx Mz?y?x(c)角动量在z方向分量的算符 ????i?或 M ??1z??(2). H原子处于态 ??2?1s?6?2s,?1s和?2s分别为H原子的1s和2s原子轨道,对应的能量分别为E1s,E2s,给出H原子的平均能量。 解法一 E?????H?d????d??

4

搜索更多关于: 结构化学 第一章练习题答案.. 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

现代结构化学 2010.9 第一章 量子力学基础知识 练习题 1.(北师大95)微观粒子体系的定态波函数所描述的状态是( B ) A. 波函数不随时间变化的状态 B.几率密度不随时间变化的状态 C. 自旋角动量不随时间变化的状态 D. 粒子势能为零的状态 2.(北大93)?是描述微观体系(运动状态)的波函数。 3.(北师大20000)若???1?ei??1,其中?为实常数,且?1已归一化,求?的归一化常数。 解:设??A(?1?ei??1)是归一化的,?2i?i?*2?i?i???d??A(??e?)(??e?)d??A(2?e?e)?1 111??1A?12?e?i??ei??12?2cos? 4.(东北师大99)已知一束自由电子的

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com