云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 北师大版八年级下册第一章 《三角形的证明》专项测试(包含答案)

北师大版八年级下册第一章 《三角形的证明》专项测试(包含答案)

  • 62 次阅读
  • 3 次下载
  • 2025/6/15 18:04:56

点评: 本题考查了角平分线的性质及全等三角形的判定及性质,解题的关键是正确地作出辅助线,将所求的三角形的面积转化为另外的三角形的面积来求. 6.(2012?广州)在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是( ) A. B. C. D. 解答: 解:根据题意画出相应的图形,如图所示: 在Rt△ABC中,AC=9,BC=12, 根据勾股定理得:AB==15, 过C作CD⊥AB,交AB于点D, 又S△ABC=AC?BC=AB?CD, ∴CD===, . 故选A 则点C到AB的距离是7.如图,在△ABC中AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是( )

A. 1 B. 2 C. 3 解答: 解:在△ABC中,AD⊥BC,CE⊥AB, ∴∠AEH=∠ADB=90°; ∵∠EAH+∠AHE=90°,∠DHC+∠BCH=90°, D. 4 ∵∠EHA=∠DHC(对顶角相等), ∴∠EAH=∠DCH(等量代换); ∵在△BCE和△HAE中 , ∴△AEH≌△CEB(AAS); ∴AE=CE; ∵EH=EB=3,AE=4, ∴CH=CE﹣EH=AE﹣EH=4﹣3=1. 故选A. 8.如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为( )

A. B. C. D. 6 解答: 解:∵△CEO是△CEB翻折而成, ∴BC=OC,BE=OE,∠B=∠COE=90°, ∴EO⊥AC, ∵O是矩形ABCD的中心, ∴OE是AC的垂直平分线,AC=2BC=2×3=6, ∴AE=CE, 在Rt△ABC中,AC2=AB2+BC2,即62=AB2+32,解得AB=3在Rt△AOE中,设OE=x,则AE=3﹣x, AE2=AO2+OE2,即(3﹣x)2=32+x2,解得x=, ∴AE=EC=3﹣=2. 故选A. , 9.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为( )

A. 6 B. 12 C. 32 D. 64 解答: 解:∵△A1B1A2是等边三角形, ∴A1B1=A2B1,∠3=∠4=∠12=60°, ∴∠2=120°, ∵∠MON=30°, ∴∠1=180°﹣120°﹣30°=30°, 又∵∠3=60°, ∴∠5=180°﹣60°﹣30°=90°, ∵∠MON=∠1=30°, ∴OA1=A1B1=1, ∴A2B1=1, ∵△A2B2A3、△A3B3A4是等边三角形, ∴∠11=∠10=60°,∠13=60°, ∵∠4=∠12=60°, ∴A1B1∥A2B2∥A3B3,B1A2∥B2A3, ∴∠1=∠6=∠7=30°,∠5=∠8=90°, ∴A2B2=2B1A2,B3A3=2B2A3, ∴A3B3=4B1A2=4, A4B4=8B1A2=8, A5B5=16B1A2=16, 以此类推:A6B6=32B1A2=32. 故选:C. 二.填空题(共8小题) 10.如图,在△ABC中,AB=AC,∠BAC的角平分线交BC边于点D,AB=5,BC=6,则AD= 4 .

考点: 勾股定理;等腰三角形的性质. 分析: 首先根据等腰三角形的性质:等腰三角形的三线合一,求出DB=DC=CB,AD⊥BC,再利用勾股定理求出AD的长. 解答: 解:∵AB=AC,AD是∠BAC的角平分线, ∴DB=DC=CB=3,AD⊥BC, 在Rt△ABD中, ∵AD2+BD2=AB2, ∴AD==4, 故答案为:4. 点评: 此题主要考查了等腰三角形的性质与勾股定理的应用,做题的关键是根据等腰三角形的性质证出△ADB是直角三角形. 11.如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为 7 .

考点: 翻折变换(折叠问题);勾股定理. 专题: 压轴题;探究型. 分析: 先根据勾股定理求出BC的长,再根据图形翻折变换的性质得出AE=CE,进而求出△ABE的周长. 解答: 解:∵在△ABC中,∠B=90°,AB=3,AC=5, ∴BC===4, ∵△ADE是△CDE翻折而成, ∴AE=CE, ∴AE+BE=BC=4, ∴△ABE的周长=AB+BC=3+4=7. 故答案为:7. 点评: 本题考查的是图形翻折变换的性质,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等. 12.如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC边上一点,若AE=2,EM+CM的最小值为

考点: 轴对称-最短路线问题;勾股定理. 专题: 压轴题;动点型. 分析: 要求EM+CM的最小值,需考虑通过作辅助线转化EM,CM的值,从而找出其最小值求解.

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

点评: 本题考查了角平分线的性质及全等三角形的判定及性质,解题的关键是正确地作出辅助线,将所求的三角形的面积转化为另外的三角形的面积来求. 6.(2012?广州)在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是( ) A. B. C. D. 解答: 解:根据题意画出相应的图形,如图所示: 在Rt△ABC中,AC=9,BC=12, 根据勾股定理得:AB==15, 过C作CD⊥AB,交AB于点D, 又S△ABC=AC?BC=AB?CD, ∴CD===, . 故选A 则点C到AB的距离是7.如图,在△ABC中AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是( ) A. 1 B. 2 C. 3 解答: 解:在△ABC中,AD⊥BC,CE⊥AB, ∴∠

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com