云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 模型 - 图文

模型 - 图文

  • 62 次阅读
  • 3 次下载
  • 2025/6/15 16:31:08

模型

逻辑回归是一种判别模型,表现为直接对条件概率P(y|x)建模,而不关心背后的数据分布P(x,y)。

sigmoid 函数

在介绍逻辑回归模型之前,我们先引入sigmoid函数,其数学形式是:

g(x)?1 1?e?x对应的函数曲线如下图所示:

从上图可以看到sigmoid函数是一个s形的曲线,它的取值在[0, 1]之间,在远离0的地方函数的值会很快接近0/1。这个性质使我们能够以概率的方式来解释(后边延伸部分会简单讨论为什么用该函数做概率建模是合理的)。

参数求解 模型的数学形式确定后,剩下就是如何去求解模型中的参数。统计学中常用的一种方法是最大似然估计,即找到一组参数,使得在这组参数下,我们的数据的似然度(概率)越大。 在逻辑回归模型中,似然度可表示为:

取对数可以得到对数似然度:

对于该优化问题,存在多种求解方法,这里以梯度下降的为例说明。梯度下降(Gradient Descent)又叫作最速梯度下降,是一种迭代求解的方法,通过在每一步选取使目标函数变化最快的一个方向调整参数的值来逼近最优值。基本步骤如下:

逻辑回归的损失函数是凸函数,可以保证我们找到的局部最优值同时是全局最优。此外,常用的凸优化的方法都可以用于求解该问题。例如共轭梯度下降,牛顿法,LBFGS等。 决策函数为:

选择0.5作为阈值是一个一般的做法,实际应用时特定的情况可以选择不同阈值,如果对正例的判别准确性要求高,可以选择阈值大一些,对正例的召回要求高,则可以选择阈值小一些。

多分类(softmax)

如果y不是在[0,1]中取值,而是在K个类别中取值,这时问题就变为一个多分类问题。Softmax 回归是直接对逻辑回归在多分类的推广,相应的模型也可以叫做多元逻辑回归(Multinomial Logistic Regression)。模型通过 softmax 函数来对概率建模,具体形式如下:

由下图中公式知,给定了数据x和参数θ,y=0和y=1的概率和=1

假设我们的数据点中y只会取0和1, 对于一个logistic regression model系统,有

,那么cost function定义如下:

由于y只会取0,1,那么就可以写成

不信的话可以把y=0,y=1分别代入,可以发现这个J(θ)和上面的Cost(hθ(x),y)是一样的(*^__^*) ,那么剩下的工作就是求能最小化 J(θ)的θ了~

现在将其带入Repeat中:

这是我们惊奇的发现,它和第一章中我们得到的公式

是一样滴~

也就是说,下图中所示,不管h(x)的表达式是线性的还是logistic regression model, 都能得到如下的参数更新过程。

搜索更多关于: 模型 - 图文 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

模型 逻辑回归是一种判别模型,表现为直接对条件概率P(y|x)建模,而不关心背后的数据分布P(x,y)。 sigmoid 函数 在介绍逻辑回归模型之前,我们先引入sigmoid函数,其数学形式是: g(x)?1 1?e?x对应的函数曲线如下图所示: 从上图可以看到sigmoid函数是一个s形的曲线,它的取值在[0, 1]之间,在远离0的地方函数的值会很快接近0/1。这个性质使我们能够以概率的方式来解释(后边延伸部分会简单讨论为什么用该函数做概率建模是合理的)。 参数求解 模型的数学形式确定后,剩下就是如何去求解模型中的参数。统计学中常用的一种方法是最大似然估计,即找到一组参数,使得在这组参数下,我们的数据的似然度(概率)越大。 在逻辑回归模型中,似然度可表示为:

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com