当前位置:首页 > 聚丙烯的增韧改性
常州轻工职业技术学院
综 合 实 践
系 别: 轻工工程系 专 业: 高分子材料加工技术 班 级: 10线缆331 学 生 姓 名: 王淮 学 生 学 号: 1013433119 综合实践课题: 浅谈聚丙烯的共混增韧改性 指 导 教 师: 孙燕清 起 迄 日 期: 202012.7.2-2012.7.28
浅谈聚丙烯的共混增韧改性
王淮
(常州轻工职业技术学院 常州 213164)
摘要:聚丙烯作为重要的通用塑料品种,其共混改性是人们研究的重点。本文主要综述了PP增韧机理,重点介绍了PP的增韧改性体系,介绍了PP的共混改性技术,并展望了PP共混增韧改性的发展前景。 关键词:聚丙烯;增韧;橡胶;弹性体;改性
1 前言
聚丙烯(PP)是目前用量最大的通用塑料之一,因其具有密度小,价格低,无毒性,加工性能优良,耐腐蚀,透明性好,耐用力龟裂及耐化学药品性较佳等,被广泛的应用于化工,机械,汽车,日用品等各个领域,在制品领域中所占的市场份额越来越大,但PP材料的缺点是收缩率大,韧性差,耐磨性差,低温时脆性更大,作为结构件材料,存在许多不足,这就大大限制了PP的进一步推广应用,为此,提高PP的韧性,可以产生可观的经济效应。
[1]
PP 的共混改性具有耗资少, 生产周期短的特点。PP 共混改性近年来成为PP增韧改性的重点,而橡胶或弹性体增韧PP因为改性效果明显而成为是目前研究比较多的一类方法。弹性体不同,用于增韧PP的效果也有差异。目前,用于PP增韧的弹性体有EPDM(三元乙丙橡胶),SBS(苯乙烯-丁二烯共聚物),SBR(乳聚丁苯橡胶),EPR(乙丙橡胶),BR(顺丁橡胶),POE(乙烯-聚烯烃共聚物)等等,本文就这方面的研究予以综述。
2 PP增韧机理
橡胶或热塑性弹性体与聚合物共混增韧是日前研究较多、增韧效果最明显的一类方法。关于PP增韧机理,普遍为人们所接受的主要是银纹一剪切带屈服理论,对该理论的研究己较为成熟,主要集中在银纹终止理论和剪切带屈服理论。
增韧过程可简单概括为:橡胶以分散相形式分散于基体树脂中,受外力作用时,橡胶粒了成为应力集中点,它在拉仲、压缩或冲击下发生变形,若两相界面k结良好,会导致颗粒所在区域产生大量银纹和剪切带而消耗能量;同时,银纹、橡胶粒了和剪切带又可终止银纹或剪切带,进一步转化为破坏性裂纹,从而起到了增韧作用。 只有当橡胶类聚合物与PP具有良好相容性时,并以一定的粒径分布于PP连续相中,橡胶类聚合物可与PP组成一种良好界面相4_作用的两相或多相形态结构体系。即在共混体系中,橡胶类聚合物呈细微化颗粒分散相(俗称“岛”),随机分布在PP连续相(俗称“海”)的PP球品中或球品之间,使PP大而脆的球品成为细而密集的球品,形成具有良好相界面作用的“海一岛”结构。当具有这种结构体系的增韧PP受到外力作用时,银纹、裂纹泪!裂缝首先产生在PP连续相中,处于PP裂纹和裂缝上的橡胶类聚合物粒了充当应力集中的中心,诱发大量银纹和剪切带产生,大量银纹和剪切带的产生吸收大量能量,从而阻止裂纹和裂缝穿过。另外,橡胶颗粒还可阻滞、转向并终止小裂纹发展,使之不致发展成破坏性裂纹,产
[1]
生在PP相中的银纹可穿过小于其宽度的橡胶类聚合物粒了而生长。 在弹性体颗粒的影响下,当材料受到外力时,高聚物中生长的银纹遇到橡胶类聚合物大粒了时能分裂成许多方向各异的小银纹。即银纹可在橡胶类聚合物粒了表面支化,银纹的分裂和支化能控制银纹的发展,阻止大银纹变成有破坏性的大裂纹和大裂缝;同时,银纹的增
长伴随着空化空间的发展,空化空间的发展阻止了基体内部裂纹的产生,延缓了材料的破坏,
[2]
从而达到提高PP韧性的目的。
3 PP增韧改性体系
3.1 PP/EPDM
近年的有关研究表明,β晶型的产生有利于PP韧性的提高,在PP中加入EPDM,使得
[3]
PP晶型产生了由α~β晶型的本质转变,当EPDM用量为30~40%时,体系冲击强度剧增,而此时β晶型含量达13.2%,但是EPDM增加时,其强度,热变形温度又有所下降;且共混体系中由于掺加了EPDM,造成了共混物的强度,刚度和稳定性等方面相当程度的损失,同时EPDM的加入也大大提高了成本,使之在实际应用中受到了限制。
对于反应型PP/EPDM共混物,混合时应先将EPDM与引发剂和部分PP反应共混,再加剩余的PP共混,即采用“二段加料法”,比用一步得到的共混物性能更加优越。
PP/EPDM共混体系以及以它们为基体的填充增强体系具有优异的冲击性能及较理想的综合性能,这使其步入了工程塑料的应川领域。国内多以PP /EPDM体系生产汽车配件专用料且技术比较成熟。姚亚生采用动态硫化方法制备了PP /EPDM改性材料。与简单共混PP /EPDM相比,动态硫化PP /EPDM体系的冲击性能和流动性明显提高,弯曲弹性模量基本一
[4]
致,拉伸强度略有下降。李庆国等利用基本断裂功方法研究了PP /EPDM共混体系的断裂性能,发现EPDM的加入提高了PP的比基本断裂功,且比基本断裂功随EPDM用量的增加呈先增后减的趋势。 3.2 PP/SBS
SBS具有高弹性,耐低温等特性,同时它兼具硫化橡胶和热塑性的优良性能,可以较好的增韧PP,有关研究表明:当SBS的含量较低时,SBS作为分散相,它在连续相PP中形成“海岛”结构,此结构对PP的增韧起到了很重要的作用,它的突出优点是在较大幅度提高PP韧性的同时,其模量和强度下降不多,耐热性变化不大,这些优异的特性与其两相结构有密切关系。连续相PP起到了保持整体材料模量,强度和玻璃化温度不至于过多下降的作用,而分散相胶粒却能帮助和吸收能量。
当SBS的含量在0~10份时,共混物的冲击强度随SBS含量的增加而提高,如果含量超过15份后,冲击性能反而下降,当SBS含量在10~15份时,共混物的综合力学性能较高。SBS嵌段共聚物兼具硫化橡胶和热塑性塑料的性能。吴润德用SBS嵌段共聚物将交联聚苯乙烯刚性粒子进行包覆与PP复合。结果表明: 当SBS用量6% ~ 8%时, 聚丙烯发生脆韧转变, 拉伸强度稍有下降。PP复合材料断面图像显示交联聚苯乙烯粒子分布均匀, 粒子和
[5]
基材界面模糊, 材料发生韧性破坏。 3.3 PP/SBR
当分散相与连续相有很好的相容性,界面粘接很好时,可取得理想的增韧效果,谭晓明等对PP/SBR,PP/PE-C等体系的力学性能加以研究,得到如下数据,见表1。
表1 SBR,PE-C与PP共混物的力学性能 [6]
PP/橡胶配比(质量比) PP/SBR PP/PE-C 拉伸强度 (MPa) 缺口冲击强度(KJ/m2) 拉伸强度 ( MPa) 缺口冲击强度(KJ/m2) 100/10 32.4 3.49 32.4 3.49 95/5 33.6 5.14 33.2 3.52 90/10 32.2 5.76 32.5 85/15 31.7 10.0 28.5 3.63 80/20 29.9 7.26 28.2 3.66 75/25 26.5 6.79 24.1 4.24 由表1可以发现PP/SBR力学性能优于PP/PE-C,谭晓明认为。这一原因是SBR有较多
非极性侧基,与非极性PP基体的相容性较好,而PE-C与PP相差较大,所以较难相容,因而增韧效果不如前者。
SBR增韧PP,在增韧的同时保持其刚性,使改性PP 的韧性和刚性保持平衡。王延伟等人[7]采用一种新型超细SBR 增韧PP,结果表明超细SBR 粉末橡胶的加入能够显著提高PP 的韧性;加入相容剂嵌段共混物后的增韧效果更好。采用PP 接枝SBR 与PP 共混,通过分析发现PP-g-SBR 作为改性剂能显著提高PP 的机械性能,尤其是缺口冲击强度。含PP-g-SBR 质量分数2% 的PP 在20℃时的缺口冲击强度提高了2.6倍[8]。 3.4 PP/EPR
由于EPR和PP都含有丙基,根据相似相容原理,它们之间应具有较好的相容性,另外EPR属于橡胶类,具有高弹性和良好的低温性能(脆化温度可达-60℃以下),因此EPR是PP较好的增韧改性剂,但是,一般情况下,等规聚丙烯与EPR的相容性依然存在问题,它们的共混物具有多相的形态结构,在相同的共混工艺条件下,组成比及聚合物的熔融粘度差决定着此共混物的形态。当EPR与PP具有相近的熔融粘度时,所制得的共混物的形态结构较均匀;当各组分熔融粘度不同,若EPR粘度低于PP,则EPR可以被很好的分散,相反,EPR粘度高于PP,则EPR相畴粗大,且基本呈球形,一般来说,PP/EPR共混比在60/40~40/60范围内出现相转变,PP/EPR共混比超过60/40时,PP为连续相,得到的共混物是EPR增韧PP;低于40/60时,EPR为连续相,得到的时PP增强EPR。PP/EPR共混比为80/20时,PP/EPR
[6]
共混物的常温缺口冲击强度比纯PP高10倍左右,脆化温度比纯PP下降了4倍之多。
PP/EPR共混体系的增韧效果与PP种类及乙丙共聚物的种类有关[7],乙丙橡胶用量相同的情况下,增韧共聚聚丙烯的效果远优于增韧均聚聚丙烯的效果;PP相同选择不同的乙丙共聚物,乙丙共聚物中,EPR的增韧效果要优于EPDM,见图1。另外,增韧剂的结晶度不同对增韧效果也有影响非晶EPR对PP增韧的效果要优于结晶EPR,但随着EPR用量的增加,体系拉伸屈服强度,断裂强度,硬度,弹性模量均有不同程度的下降,流动性变差,使之在实际应用中受到了限制。
70悬臂梁冲击强度(KJ/m2)[5]
6050403020100-30-20-100102030
图1 乙丙橡胶增韧PP效果 3.5 PP/BR
顺丁橡胶具有高弹性,良好的低温性能(玻璃化温度Tg=-110℃左右)和耐磨性,耐挠曲性等优良的特性,而且它的溶解度参数(σ=7.7)和PP(σ=8.1)相近。实践证明,它们的相容性很好,增韧效果明显。以国产聚丙烯粉料(熔融指数0.4~0.8)和国产顺丁橡胶(门尼值44)按100:15(重量比)共混,所得的PP/BR共混物的常温悬臂梁冲击强度比聚丙烯高6倍,脆化温度由聚丙烯的31℃降低至8℃,同时,该共混物比PP,PP/LDPE,PP/EVA等的挤出膨胀比都小,成型后尺寸稳定性好。
共分享92篇相关文档