当前位置:首页 > 国科大—人工智能课后答案
(x){P(x)∧[~P(A)∨P(x)]∧[P(x)∨~P(B)]∧[~P(A)∨~P(B)]}
P(x)∧[~P(A)∨P(x)]∧[P(x)∨~P(B)]∧[~P(A)∨~P(B)] 得子句集: 1, P(x1)
2, ~P(A)∨P{x2} 3, P(x3)∨~P(B) 4, ~P(A)∨~P(B)
(2)(
z)[Q(z)→P(z)]→{(x)[Q(x)→P(A)]∧[Q(x)→P(B)]}
目标取反化子句集: ~{( ~{(
z)[Q(z)→P(z)]→{(x)[Q(x)→P(A)]∧[Q(x)→P(B)]}} z)[~Q(z)∨P(z)]→{(x)[~Q(x)∨P(A)]∧[~Q(x)∨P(B)]}}
~{~{(z)[~Q(z)∨P(z)]}∨{(x)[~Q(x)∨P(A)]∧[~Q(x)∨P(B)]}} ( (
z)(z)(
x){[~Q(z)∨P(z)]∧{[Q(x)∧~P(A)]∨[Q(x)∧~P(B)]}}
x){[~Q(z)∨P(z)]∧{Q(x)∧[Q(x)∨~P(B)]∧[~P(A)∨Q(x)]∧[~P(A)∨~P(B)]}
[~Q(z)∨P(z)]∧Q(x)∧[Q(x)∨~P(B)]∧[~P(A)∨Q(x)]∧[~P(A)∨~P(B)] 得子句集: 1, ~Q(z)∨P(z) 2, Q(x2) 3, Q(x3)∨~P(B) 4, ~P(A)∨Q(x4) 5, ~P(A)∨~P(B)
(3)(x)(y){[P(f(x))∧Q(f(B))]→[P(f(A))∧P(y)∧Q(y)]} 目标取反化子句集:
~(x)(y){[P(f(x))∧Q(f(B))]→[P(f(A))∧P(y)∧Q(y)]} ~(x)(y){~[P(f(x))∧Q(f(B))]∨[P(f(A))∧P(y)∧Q(y)]} ( x)( y){[P(f(x))∧Q(f(B))]∧[~P(f(A))∨~P(y)∨~Q(y)]} P(f(x))∧Q(f(B))∧[~P(f(A))∨~P(y)∨~Q(y)] 得子句集: 1,P(f(x1)) 2,Q(f(B))
3,~P(f(A))∨~P(y3)∨~Q(y3)
(4)(x)(
y)P(x,y)→(y)(x)P(x,y)
目标取反化子句集: ~{(x)( ~{~[(x)( ~{~[(x)(
y)P(x,y)→(
y)(x)P(x,y)} y)(x)P(x,y)} v)(u)P(u,v)}
y)P(x,y)]∨(y)P(x,y)]∨(
[(x)( (x)(
y)P(x,y)]∧(v)(y)(v)(
u)~P(u,v)
u)P(x,y)]∧~P(u,v)
P(a,y)∧~P(u,f(y)) 得子句集: 1,P(a,y1) 2,~P(u,f(y2))
(5)(x){P(x)∧[Q(A)∨Q(B)]}→(x)[P(x)∧Q(x)]
目标取反化子句集: ~{(
x){P(x)∧[Q(A)∨Q(B)]}→(x)[P(x)∧Q(x)]}
~{~{(x)P(x)∧[Q(A)∨Q(B)]}∨(x)[P(x)∧Q(x)]} {( {( (
x)P(x)∧[Q(A)∨Q(B)]}∧(x)P(x)∧[Q(A)∨Q(B)]}∧(x)(
x)[~P(x)∨~Q(x)]} y)[~P(y)∨~Q(y)]}
y){P(x)∧[Q(A)∨Q(B)]∧[~P(y)∨~Q(y)]}
P(x)∧[Q(A)∨Q(B)]∧[~P(y)∨~Q(y)] 得子句集: 1,P(x) 2,Q(A)∨Q(B) 3,~P(y)∨~Q(y)
第7题
答: (1)将(x)P(x)取反化为子句: ~(x)P(x) =( x)~P(x)
与条件[P(A1)∨P(A2)]合在一起得子句集: {~P(x), P(A1)∨P(A2)}
所以,公式(x)P(x)是[P(A1)∨P(A2)]的逻辑推论。
(2)对于(x)P(x)的Skolem形,即P(A),取反后为~P(A),与条件[P(A1)∨P(A2)]合在一起得子句集:
{~P(A), P(A1)∨P(A2)}
该子句集不能进行归结,故P(A)不是[P(A1)∨P(A2)]的逻辑推论。 第8题
答: 该问题用谓词公式描述如下: 已知:
(1)(x){Food(x)→Like(John, x)} (2)Food(Apple) (3)(
x)(
y){[Eat(y, x)∧~Kill(x, y)]→Food(x)}
(4)Eat(Bill, Peanut)∧~Kill(Penut, Bill) (5)(
x){Eat(Bill, x)→Eat(Sue, x)}
目标1:Like(John, Peanut) 目标2:(x)Food(x)∧Eat(Sue, x) 已知条件化子句集: (1)( = (
x){Food(x)→Like(John, x)} x){~Food(x)∨Like(John, x)}
=> {~Food(x)∨Like(John, x)} (2)Food(Apple) (3)( = (
x)(x)(
y){[Eat(y, x)∧~Kill(x, y)]→Food(x)} y){~[Eat(y, x)∧~Kill(x, y)]∨Food(x)}
共分享92篇相关文档