云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 国科大—人工智能课后答案

国科大—人工智能课后答案

  • 62 次阅读
  • 3 次下载
  • 2025/6/15 15:20:27

(x){P(x)∧[~P(A)∨P(x)]∧[P(x)∨~P(B)]∧[~P(A)∨~P(B)]}

P(x)∧[~P(A)∨P(x)]∧[P(x)∨~P(B)]∧[~P(A)∨~P(B)] 得子句集: 1, P(x1)

2, ~P(A)∨P{x2} 3, P(x3)∨~P(B) 4, ~P(A)∨~P(B)

(2)(

z)[Q(z)→P(z)]→{(x)[Q(x)→P(A)]∧[Q(x)→P(B)]}

目标取反化子句集: ~{( ~{(

z)[Q(z)→P(z)]→{(x)[Q(x)→P(A)]∧[Q(x)→P(B)]}} z)[~Q(z)∨P(z)]→{(x)[~Q(x)∨P(A)]∧[~Q(x)∨P(B)]}}

~{~{(z)[~Q(z)∨P(z)]}∨{(x)[~Q(x)∨P(A)]∧[~Q(x)∨P(B)]}} ( (

z)(z)(

x){[~Q(z)∨P(z)]∧{[Q(x)∧~P(A)]∨[Q(x)∧~P(B)]}}

x){[~Q(z)∨P(z)]∧{Q(x)∧[Q(x)∨~P(B)]∧[~P(A)∨Q(x)]∧[~P(A)∨~P(B)]}

[~Q(z)∨P(z)]∧Q(x)∧[Q(x)∨~P(B)]∧[~P(A)∨Q(x)]∧[~P(A)∨~P(B)] 得子句集: 1, ~Q(z)∨P(z) 2, Q(x2) 3, Q(x3)∨~P(B) 4, ~P(A)∨Q(x4) 5, ~P(A)∨~P(B)

(3)(x)(y){[P(f(x))∧Q(f(B))]→[P(f(A))∧P(y)∧Q(y)]} 目标取反化子句集:

~(x)(y){[P(f(x))∧Q(f(B))]→[P(f(A))∧P(y)∧Q(y)]} ~(x)(y){~[P(f(x))∧Q(f(B))]∨[P(f(A))∧P(y)∧Q(y)]} ( x)( y){[P(f(x))∧Q(f(B))]∧[~P(f(A))∨~P(y)∨~Q(y)]} P(f(x))∧Q(f(B))∧[~P(f(A))∨~P(y)∨~Q(y)] 得子句集: 1,P(f(x1)) 2,Q(f(B))

3,~P(f(A))∨~P(y3)∨~Q(y3)

(4)(x)(

y)P(x,y)→(y)(x)P(x,y)

目标取反化子句集: ~{(x)( ~{~[(x)( ~{~[(x)(

y)P(x,y)→(

y)(x)P(x,y)} y)(x)P(x,y)} v)(u)P(u,v)}

y)P(x,y)]∨(y)P(x,y)]∨(

[(x)( (x)(

y)P(x,y)]∧(v)(y)(v)(

u)~P(u,v)

u)P(x,y)]∧~P(u,v)

P(a,y)∧~P(u,f(y)) 得子句集: 1,P(a,y1) 2,~P(u,f(y2))

(5)(x){P(x)∧[Q(A)∨Q(B)]}→(x)[P(x)∧Q(x)]

目标取反化子句集: ~{(

x){P(x)∧[Q(A)∨Q(B)]}→(x)[P(x)∧Q(x)]}

~{~{(x)P(x)∧[Q(A)∨Q(B)]}∨(x)[P(x)∧Q(x)]} {( {( (

x)P(x)∧[Q(A)∨Q(B)]}∧(x)P(x)∧[Q(A)∨Q(B)]}∧(x)(

x)[~P(x)∨~Q(x)]} y)[~P(y)∨~Q(y)]}

y){P(x)∧[Q(A)∨Q(B)]∧[~P(y)∨~Q(y)]}

P(x)∧[Q(A)∨Q(B)]∧[~P(y)∨~Q(y)] 得子句集: 1,P(x) 2,Q(A)∨Q(B) 3,~P(y)∨~Q(y)

第7题

答: (1)将(x)P(x)取反化为子句: ~(x)P(x) =( x)~P(x)

与条件[P(A1)∨P(A2)]合在一起得子句集: {~P(x), P(A1)∨P(A2)}

所以,公式(x)P(x)是[P(A1)∨P(A2)]的逻辑推论。

(2)对于(x)P(x)的Skolem形,即P(A),取反后为~P(A),与条件[P(A1)∨P(A2)]合在一起得子句集:

{~P(A), P(A1)∨P(A2)}

该子句集不能进行归结,故P(A)不是[P(A1)∨P(A2)]的逻辑推论。 第8题

答: 该问题用谓词公式描述如下: 已知:

(1)(x){Food(x)→Like(John, x)} (2)Food(Apple) (3)(

x)(

y){[Eat(y, x)∧~Kill(x, y)]→Food(x)}

(4)Eat(Bill, Peanut)∧~Kill(Penut, Bill) (5)(

x){Eat(Bill, x)→Eat(Sue, x)}

目标1:Like(John, Peanut) 目标2:(x)Food(x)∧Eat(Sue, x) 已知条件化子句集: (1)( = (

x){Food(x)→Like(John, x)} x){~Food(x)∨Like(John, x)}

=> {~Food(x)∨Like(John, x)} (2)Food(Apple) (3)( = (

x)(x)(

y){[Eat(y, x)∧~Kill(x, y)]→Food(x)} y){~[Eat(y, x)∧~Kill(x, y)]∨Food(x)}

搜索更多关于: 国科大—人工智能课后答案 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

(x){P(x)∧[~P(A)∨P(x)]∧[P(x)∨~P(B)]∧[~P(A)∨~P(B)]} P(x)∧[~P(A)∨P(x)]∧[P(x)∨~P(B)]∧[~P(A)∨~P(B)] 得子句集: 1, P(x1) 2, ~P(A)∨P{x2} 3, P(x3)∨~P(B) 4, ~P(A)∨~P(B) (2)(z)[Q(z)→P(z)]→{(x)[Q(x)→P(A)]∧[Q(x)→P(B)]} 目标取反化子句集: ~{( ~{(z)[Q(z)→P(z)]→{(x)[Q(x)→P(A)]∧[Q(x)→P(B)]}} z)[~Q(z)∨P(z)]→{(x)[~Q(x)∨P(A)]∧[~Q(x)∨P(B)]}}

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com