当前位置:首页 > 王镜岩生物化学第三版考研笔记 - 合版 - 图文
凝血酶(牛) ?Asp-Ala-Cys-Glu-Gly-Asp-Ser-Gly-Gly-Pro-Phe-Val-Met-Lys-Ser-Pro 这4个源于哺乳动物的酶活性中心,都含有一个包括Ser在内的完全相同的六肽: ?Gly-Asp-Ser-Gly-Gly-Pro? 同源的趋异进化?
来自胰脏的胰凝乳蛋白酶(Phe、 Tyr、 Trp、)、胰蛋白酶(Lys、Arg )和弹性蛋白酶(疏水残基),活性中心Ser附近的a.a顺序相同,且分子一级结构中有40%a.a顺序相同,三维结构也相同,表明它们起源于共同的祖先,但是它们的底物专一性不同。
这种来源于共同祖先,经基因突变而得出不同专一性的结果称为同源的趋异进化。 异源的趋同进化?
来自枯草杆菌的Ser蛋白酶的结构与上述三种酶很不同,且活性中心Ser附近的a.a顺序也不同(-Gly-Thr-Ser-Met-Ala-Ser)。 电荷中继网的位置也不同:
Asp102-His57-Ser195(胰凝乳蛋白酶和弹性蛋白酶) Asp32-His64-Ser221(枯草杆菌蛋白酶)
这表明枯草杆菌蛋白酶与胰凝乳蛋白酶等三个酶来源不同,但它们的电荷中继网相同,功能相同,这种情况称异源的趋同进化。
4、 判断和研究活性中心的主要方法
(1)通过酶的专一性(2)酶的化学修饰法(3)亲合标记法(4)X射线晶体衍射法 (二) 酶作用机理举例
1、 胰凝乳蛋白酶的作用机理: (1)、 专一性
图
该酶需要底物有一个疏水基团结合于酶上的疏水部位,这个结合起定位作用,使底物敏感键对准酶的催化基团。 疏水定位基团:Phe、Tyr、Trp (2)、 催化机理
① 活性中心:Ser195—His57—Asp102,三者构成一个氢键体系,His57的咪唑基是Ser195的羟基和Asp102的羧基之间的桥梁,这个氢键体系称为电荷中继网(harge relay network)。通过电荷中继网,进行酸碱催化及共价催化。Ser195由于His57和Asp102的影响而成为很强的亲核基团,它是活性中心的底物结合部位,His57是活性中心的催化部位。
PP285 图4-27,P287 图4-30 胰凝乳蛋白酶中的电荷中继网
② 胰凝乳蛋白酶对多肽的水解过程
P288 图4—31胰凝乳蛋白酶对多肽的水解过程
第一阶段 酰化
Ser195?--OH 中的氧攻击肽键的羰基碳,形成四联体过渡态(Ser195—OH、底物的酰基、底物的氨基、His的咪唑),敏感肽键断裂,底物中的胺成分通过氢键与酶的His57咪唑基相连,底物的羧基部分酯化到Ser195的羟基上。 第二阶段 脱酰
电荷中继网从水中吸收一个质子,结果产生的OH-攻击连在Ser195上底物的羧基碳原子,形成四联体过渡态,然后His57供出一个质子给Ser195上的氧原子,结果底物中的酸成分从Ser195上释放。
除胰凝乳蛋白酶外,在催化中具有Asp-His-Ser电荷中继网的还有胰蛋白酶,弹性蛋白酶,枯草杆菌蛋白酶等,但它们的底物结合部位不同,底物专一性也不同。
P288 图4-32三种胰脏中的蛋白酶的底物结合部位
胰凝乳蛋白酶 胰蛋白酶 弹性蛋白酶 可供芳香环及大 可供带电荷的 只能让Ala等小分子 的非极性侧链伸入 Lys.、Arg进入 进入 第五节 多酶体系与酶活性的调节控制 一、 多酶体系
(一) 多酶体系及其分类
细胞中的许多酶,常常在一个连续的反应链中起作用,前一个反应的产物是后一个反应的底物。
多酶体系:multienzyme system在完整细胞内的某一代谢途径中,由几个酶形成的反应链体系。
可分为三种类型:可溶性的(分散性的),结构化的(多酶复合体),在细胞结构上有定位关系的(结构化程度更高)。 P297 图4—42(分散性的多酶体系) 图4-43 (多酶复合体) (二) 多酶体系的自我调节
(1)大部分具有自我调节能力的多酶体系,第一步反应就是限速步骤,它控制着全部反应序列的总速度。 (2)反馈抑制与底物激活
催化第一步反应的酶,大多都是别构酶,能被全部反应序列的最终产物所抑制,有时则是反应序列分叉处的酶受到最终产物的抑制,称为反馈抑制;有的被底物激活
P299 图4-45反馈抑制与底物激活
正调节物:一般是别构酶的底物,可以激活别构酶。 负调节物:可以抑制别构酶,一般是代谢序列的最终产物。
通过多酶体系的自我调节(反馈抑制和底物激活),可使代谢过程得以协调地、有条不紊地合理进行。 下面讨论具体到每个酶是怎样调节的 二、 酶活性的调节控制和调节酶
调节酶:活性可被调节的酶,主要是别构酶和共价调节酶。 (一) 别构效应的调控
别构效应:调节物(效应物)与别构酶分子中的别构中心(调节中心)结合后,诱导产生或稳定住酶分子的某种构象,使酶活性中心对底物的结合催化作用受到影响,从而调节酶促反应的速度。 (1)、 别构酶的结构特点和性质
(1) 已知的别构酶都是寡聚酶,含有两个或两个以上亚基
(2) 具有活性中心和别构中心(调节中心),活性中心负责底物结合和催化,别构中心负责调节酶反应速度。活性中心和别构中心处在不同的亚基上或同一亚基的不同部位上。
(3) 多数别构酶不止一个活性中心,活性中心间有同种效应,底物就是调节物:有的别构酶不止一个别构中心,可以接受不同的代谢物的调节。
(4) 别构酶由于同位效应和别构效应,不遵循米式方程,动力学曲线也不是典型的双曲线型,而是S型(同位效应为正协同效应)和压低的近双曲线(同位效应为负协同效应)。 (2)、 别构酶的动力学曲线
① 同位效应为正协同效应的别构酶是S型曲线 P303 图4-46 4-47
这种S形曲线体现为,当底物浓度发生较小变化时,别构酶可以极大程度地控制反应速度,这是别构酶可以灵活地调节反应速度的原因。
米氏酶:[S]0.9/[S]0.1=81 别构酶:[S]0.9/[S]0.1=3
表明当底物浓度发生较小变化时,如上升3倍,别构酶的酶促反应速度可以从0.1Vmax升至0.9Vmax 。
当增加正调节物浓度时Km减小,亲和力增大,协同性减小:当增加负调节物的浓度时Km增加,亲和力减小,协同性增大(对底物浓度的反应灵敏度增加)。
② 同位效应为负协同效应的别构酶是近似双曲线 P304图4-48
负协同效应时酶的反应速度对底物浓度的变化不敏感 (3)、 别构酶调节活性的机理 ① 序变模型:
酶分子中亚基结合底物后,构象逐个地依次变化。 ② 齐变模型:
(4)、 别构酶的鉴定
① S型曲线是必要但不充分条件 ② 脱敏作用
③ [S]0.9/[S]0.1 Rs=81 米氏酶 Rs<81 正协同 Rs>81 负协同 ④ Hill系数法
(二) 可逆共价修饰的调控(共价调节酶)
共价调节酶:酶分子被其它的酶催化进行共价修饰,从而在活性形式与非活性形式之间相互转变。
举例:糖原磷酸化酶 P313 图4-57
信号的级联放大:
1分子磷酸化酶激酶,活化生成几千个磷酶化酶a 1分子磷酸化酶a,催化生成几千个1-P-G 共价调节酶的两种常见类型
①磷酸化 去磷酸化 -OH ATP
②腺苷酰化 脱腺苷酰化 腺苷酰基由ATP提供 (三) 酶原的激活
具有不可逆性。属于此类的有消化系统中的酶(胰蛋白酶,胰凝乳蛋白酶,胃蛋白酶)和血液凝固系统中的酶。 (1)、 胰凝乳蛋白酶原的激活(由胰蛋白酶激活)
P314 图4-58
(2)、 胰蛋白酶对胰脏蛋白酶原的激活 肠激酶
胰蛋白酶原 胰蛋白酶
胰凝乳蛋白酶原 弹性蛋白酶原 胰蛋白酶
胰凝乳蛋白酶 弹性蛋白酶 羧肽酶原 羧肽酶 (四) 专一性调控蛋白(调控因子)对酶活性的调节控制 钙调蛋白、激素结合蛋白,促进或抑制特异的酶活性 第六节 酶与抗体——抗体酶 abzyme(antibody enzyme) 参阅 P293
又称催化性抗体(catalytic antibody),是一种具有催化功能的抗体分子。
过渡态理论:酶与底物不是在基态,而是在过渡态结构互补,亲和力最强,释放出的结合能使过渡态结合物能级降低,利于反应物分子越过能垒,加速反应。 而抗体与抗原是基态结合。
第七节 同工酶、诱导酶 1、 同工酶
能催化同一种化学反应,但其酶蛋白本身的分子结构不同的一组酶,存在于生物的同一种属或同一个体的不同组织中,甚至同一组织、同一细胞中。 哺乳动物乳酸脱氢酶有5种
CH3CHOH-COO-+NAD+ LDH CH3COCOO-+NADH+H+ 均由4个亚基组成
HHHH 在心肌中占优势 HHHM HHMM HMMM
MMMM 在骨骼肌中占优势 2、 诱导酶
酶可相对地区分为结构酶和诱导酶。
结构酶:指正常细胞内存在的酶,它的含量较稳定,受外界因素影响很小。
诱导酶:在正常细胞中含量极少或没有,当细胞中加入特定诱导物后,诱导产生的酶,含量在诱导物存在下显著增高,诱导物往往是该酶的底物或底物类似物。 如:大肠杆菌中的β-半乳糖苷酶 E.coli在含Glc的培养基中
E.coli在只含乳糖的培养基中:Glc-β(1→4)Gal苷 第八节 酶工程
第三章 蛋白质
第一节 蛋白质概论
蛋白质是所有生物中非常重要的结构分子和功能分子,几乎所有的生命现象和生物功能都是蛋白质作用的结果,因此,蛋
白质是现代生物技术,尤其是基因工程,蛋白质工程、酶工程等研究的重点和归宿点。 一、 蛋白质的化学组成与分类 1、 元素组成
碳 50% 氢7% 氧23% 氮16% 硫 0-3% 微量的磷、铁、铜、碘、锌、钼 凯氏定氮:平均含氮16%,粗蛋白质含量=蛋白氮×6.25 2、 氨基酸组成
从化学结构上看,蛋白质是由20种L-型α氨基酸组成的长链分子。 3、 分类
(1)、 按组成:
简单蛋白:完全由氨基酸组成
结合蛋白:除蛋白外还有非蛋白成分(辅基)
详细分类,P 75 表 3-1,表 3-2。(注意辅基的组成)。 (2)、 按分子外形的对称程度:
球状蛋白质:分子对称,外形接近球状,溶解度好,能结晶,大多数蛋白质属此类。 纤维状蛋白质:对称性差,分子类似细棒或纤维状。 (3)、 功能分:
酶、运输蛋白、营养和贮存蛋白、激素、受体蛋白、运动蛋白、结构蛋白、防御蛋白。 4、 蛋白质在生物体内的分布
含量(干重) 微生物 50-80%
人 体 45% 一般细胞 50% 种类 大肠杆菌 3000种
人体 10万种 生物界 1010-1012
二、 蛋白质分子大小与分子量
蛋白质是由20种基本aa组成的多聚物,aa数目由几个到成百上千个,分子量从几千到几千万。一般情况下,少于50个aa的低分子量aa多聚物称为肽,寡肽或生物活性肽,有时也罕称多肽。多于50个aa的称为蛋白质。但有时也把含有一条肽链的蛋白质不严谨地称为多肽。此时,多肽一词着重于结构意义,而蛋白质原则强调了其功能意义。
P 76 表3-3 (注意:单体蛋白、寡聚蛋白;残基数、肽链数。)
蛋白质分子量= aa数目*110
对于任一给定的蛋白质,它的所有分子在氨基酸组成、顺序、肽链长度、分子量等方面都是相同的,均一性。 三、 蛋白质分子的构象与结构层次
蛋白质分子是由氨基酸首尾连接而成的共价多肽链,每一种天然蛋白质都有自己特有的空间结构,这种空间结构称为蛋白质的(天然)构象。
P77 图3-1,蛋白质分子的构象示意图。
一级结构 氨基酸顺序
二级结构 α螺旋、β折叠、β转角,无规卷曲 三级结构 α螺旋、β折叠、β转角、松散肽段 四级结构 多亚基聚集 四、 蛋白质功能的多样性
细胞中含量最丰实、功能最多的生物大分子。 1. 酶
2. 结构成分(结缔组织的胶原蛋白、血管和皮肤的弹性蛋白、膜蛋白) 3. 贮藏(卵清蛋白、种子蛋白)
4. 物质运输(血红蛋白、Na+-K+-ATPase、葡萄糖运输载体、脂蛋白、电子传递体) 5. 细胞运动(肌肉收缩的肌球蛋白、肌动蛋白) 6. 激素功能(胰岛素)
7. 防御(抗体、皮肤的角蛋白、血凝蛋白) 8. 接受、传递信息(受体蛋白,味觉蛋白)
9. 调节、控制细胞生长、分化、和遗传信息的表达(组蛋白、阻遏蛋白) 第二节 氨基酸
一、 蛋白质的水解(见P79)
共分享92篇相关文档