当前位置:首页 > 王镜岩生物化学第三版考研笔记 - 合版 - 图文
转换数的倒数即为催化周期:一个酶分子每催化一个底物分子所需的时间。 如:乳糖脱氢酶转换数为1000/秒,则它的催化周期为10-3秒。 二、 底物浓度对酶促反应速度的影响
单底物酶促反应,包括异构酶、水解酶及大部分裂合催化的反应。 1913 Michaelis 和Menten 提出米—曼方程。
(一) 底物浓度对酶促反应速度的影响——米式学说的提出 1903 Henri 研究蔗糖水解反应。
sucrose +H2O acid glucose +fructose sucrase 酸水解
V
[sucrose]
酶水解 V
V
V
[enzyme]( substrate不变) [sucrose] 底物浓度与酶促反应速度的关系:
当底物浓度不断增大时,反应速度不再上升,趋向一个极限,酶被底物饱和(底物饱和现象)。 中间产物假说:酶与底物先络合成一个中间产物,然后中间产物进一步分解成产物和游离的酶。 证据:(1)竞争性抑制实验(2)底物保护酶不变性(3)结晶ES复合物的获得。 米式学说:
1913年,Michaelis和Menten继承和发展了中间产物学说,在前人工作基础上提出酶促动力学的基本原理,并以数学公式表明了底物浓度与酶促反应速度的定量关系,称米式学说:
(二) 米式方程的导出:
1、 基于快速平衡假说——早年的米式方程
最初,Michaelis和Menten是根据“快速平衡假说”推出米式方程。 快速平衡假说:
① 在反应的初始阶段,底物浓度远远大于酶浓度,因此,底物浓度{S}可以认为不变。
② 游离的酶与底物形成ES的速度极快,E + S ES,而ES形成产物的速度极慢,ES分解成产物P对于[ES]浓度的动态平衡没有影响,不予考虑。 K1、K2》K3
③ 因为研究的是初速度,P的量很小,由P ES可以忽略不记。
ES的生成速度:K1([E] - [ES])[S] ES的分解速度:K2[ES]
K1([E] - [ES])[S] = K2[ES]
反应速度:
KS现在称为底物常数
2、 Briggs和Haldane的“稳态平衡假说”及其对米式方程的发展: 稳态平衡假说:
[ES]的的生成与分解处于动态平衡(稳态),有时必须考虑[ES]分解成产物P对于[ES]动态平衡的影响([ES]分解速度)。或者说,[ES]的动态平衡(分解速度)不仅与ES E+S有关,还与ES P + E有关。 稳态平衡假说的贡献在于第②点。 用稳态假说推导米式方程: ES生成速度:
k1([E] - [ES])[S] ES分解速度: k2[ES]+k3[ES]
以上两个速度相等。
k1([E] - [ES])[S] = k2[ES]+k3[ES]
反应速度:
Vmax=k3 [E]
Km称米氏常数,当Km及Vmax已知时,即可确定酶反应速度与底物浓度的关系。 (三) 米式方程讨论
1、 快速平衡假说与稳态平衡假说的实质区别
当K1、K2>>K3时,即ES P是整个反应平衡中极慢的一步,那么
这就是早年提出的米式方程
因此说,稳态平衡 = 快速平衡 + 慢速平衡,
当ES P(即K3/K1)极慢时,稳态平衡基本等于快速平衡 2、 Km的物理意义
当反应速度v=1/2 Vmax时, Km = [S],
Km的物理意义是:当反应速度达到最大反应速度的一半时底物的浓度。 单位:与底物浓度的单位一致,mol?L-1或mmol?L-1
Km是酶的特征常数之一。一般只与酶的性质有关,与酶的浓度无关。不同的酶Km值不同。
P248 表4-5 一些酶的Km值。 3、 Km与天然底物
如果一个酶有几种底物,则每一种底物各有一个特定的Km,其中Km最小的底物称该酶的最适底物或天然底物。因为Km愈小(达到Vmax一半所需的底物浓度愈小)表示V变化越灵敏底物。
4、 Km、Ks与底物亲和力
Km称米式常数,Km=(K2+K3)/K1 ,从某种意义上讲,Km是ES分解速度(K2+K3)与形成速度(K1)的比值,它包含ES解离趋势(K2/K1)和产物形成趋势(K3/K1)。
Ks称为底物常数,Ks=K2/K1,它是ES的解离常数,只反映ES解离趋势,因此,1/Ks可以表示酶与底物的亲和力大小(ES形成趋势),不难看出,底物亲和力大不一定反应速度大(产物形成趋势,K3/K1) 只有当K2、K1>>K3时,Km≈Ks,因此,1/Km只能近似地表示底物亲和力的大小。 问题:
(1) Km越小,底物亲和力越大(X) (2) Ks越小,底物亲和力越大(√)
(3) 天然底物就是亲和力最大的底物(X) (4) 天然底物就是Km值最小的底物(√) 5、 Km与米式方程的实际用途 已知V求[S] 已知[S]求V
相对速度(酶活性中心被占据分数Y):
当v=Vmax时,表明酶的活性部位已全部被底物占据,v与[S]无关,只和[Et]成正比。当v=1/2 Vmax时,表示活性部位有一半被占据。
设定达到最大反应速度的0.9倍时,所需底物浓度为[S]0.9 [S]0.9=9Km
同理有:[S]0.8=4Km
[S]0.7=2.33Km [S]0.6=1.5Km [S]0.5=1Km [S]0.1=1/9Km [S]0.9 /[S]0.1=81 [S]0.7/[S]0.1=21
(四) Km和Vmax的求解方法 1、 双倒数作图法
要从实验数据所得到的v-[S]曲线来直接决定Vmax是很困难的,也不易求出Km值。 由米式方程两边取倒数:
将实验所得的初速度数据v和[S]取倒数,得各种1/v和1/[S]值,将1/v对1/[S]作图,得 P250 图4-6
上图[S]范围在0.330—2.0Km,最适。
若[S]范围在3.3—20 Km ,直线斜率太小。
若[S]范围在0.033––0.2 Km ,直线斜率太大。
如当Km=1×10-5mol/L时,实验所取底物浓度范围应在0.33×10-5-2.0×10-5mol/L。 一般选底物浓度应考虑能否得到1/[S]的常数增量。
如当选[S]为1.01、1.11、1.25、1.42、1.66、2.0、2.5、3.33、5.0、10时 1/[S]为0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0是常数增量。 反之,若选[S]为常数增量1.0、2.0、3.0、4.0、5.0、10时,
1/[S]为0.1、0.111、0.125、0.5、1.0,是非常数增量,点多集中在1/v轴附近。 2、 V—V/[S]作图法 P250 图4-7
三、 多底物的酶促反应
前面讨论的米氏方程(推导米氏方程时用的是单底物),适用于单底物酶促反应,如异构、水解及大部分裂合反应,不适用于多底物反应。
A、B、C表示底物,按照底物与酶的结合顺序,产物则按它们从酶产复合物中释放次序分别用P、Q、R表示。 双底物酶促反应已知有三种机理 1、 有序顺序反应机理
底物A、B与酶结合的顺序是一定的,产物P、Q的释放顺序也是一定的。 P251
举例:P251 乙醇脱氢酶 2、 随机顺序反应机理
底物A、B与酶结合的顺序是随机的,产物P、Q的释放顺序也是随机的。
P252
如糖原磷酸化酶 3、 乒乓反应机理
先结合第一个底物A,释放第一个产物P,酶的构象发生变化,结合第二个底物B,释放第二个产物Q。 P252
举例: 谷丙转氨酶
四、 pH对酶促反应速度的影响 1. pH影响酶活力的因素
①影响酶蛋白构象,过酸或过碱会使酶变性。
②影响酶和底物分子解离状态,尤其是酶活性中心的解离状态,最终影响ES形成。
③影响酶和底物分子中另一些基团解离,这些基团的离子化状态影响酶的专一性及活性中心构象。 2.酶的最适pH和稳定性pH
最适pH:使酶促反应速度达到最大时的介质pH。
酶在试管反应中的最适pH与它所在细胞中的生理pH不一定完全相同,为什么? 几种酶的最适pH,见P253表4—6。
稳定性pH:在一定pH范围内,酶不会变性失活,此范围称酶的稳定性pH。 图
A.最适pH曲线:最适pH=6.8 B.稳定性pH曲线:pH5~8
曲线B:将酶在不同pH下保温,再调回pH6.8,测定反应速度。
曲线B说明,在pH6.8~8及5~6.8范围内反应速度的降低,不是由于酶蛋白变性失活造成的,而是由于酶或底物形成了不
共分享92篇相关文档