当前位置:首页 > 2016年湖北省荆门市中考数学试卷及答案解析
【解答】解:把x=3代入方程得9﹣3(m+1)+2m=0, 解得m=6,
则原方程为x2﹣7x+12=0, 解得x1=3,x2=4,
因为这个方程的两个根恰好是等腰△ABC的两条边长,
①当△ABC的腰为4,底边为3时,则△ABC的周长为4+4+3=11; ②当△ABC的腰为3,底边为4时,则△ABC的周长为3+3+4=10. 综上所述,该△ABC的周长为10或11. 故选:D.
10.若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为( ) A.x1=0,x2=6 B.x1=1,x2=7 C.x1=1,x2=﹣7 D.x1=﹣1,x2=7 【考点】二次函数的性质;解一元二次方程-因式分解法.
【分析】先根据二次函数y=x2+mx的对称轴是x=3求出m的值,再把m的值代入方程x2+mx=7,求出x的值即可.
【解答】解:∵二次函数y=x2+mx的对称轴是x=3, ∴﹣=3,解得m=﹣6,
∴关于x的方程x2+mx=7可化为x2﹣6x﹣7=0,即(x+1)(x﹣7)=0,解得x1=﹣1,x2=7.
故选D.
11.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是( )
A.△AFD≌△DCE B.AF=AD C.AB=AF D.BE=AD﹣DF
【考点】矩形的性质;全等三角形的判定.
【分析】先根据已知条件判定判定△AFD≌△DCE(AAS),再根据矩形的对边相等,以及全等三角形的对应边相等进行判断即可. 【解答】解:(A)由矩形ABCD,AF⊥DE可得∠C=∠AFD=90°,AD∥BC, ∴∠ADF=∠DEC. 又∵DE=AD,
∴△AFD≌△DCE(AAS),故(A)正确; (B)∵∠ADF不一定等于30°,
∴直角三角形ADF中,AF不一定等于AD的一半,故(B)错误; (C)由△AFD≌△DCE,可得AF=CD, 由矩形ABCD,可得AB=CD, ∴AB=AF,故(C)正确;
(D)由△AFD≌△DCE,可得CE=DF, 由矩形ABCD,可得BC=AD,
第9页(共21页)
又∵BE=BC﹣EC,
∴BE=AD﹣DF,故(D)正确; 故选(B)
12.如图,从一块直径为24cm的圆形纸片上剪出一个圆心角为90°的扇形ABC,使点A,B,C在圆周上,将剪下的扇形作为一个圆锥的侧面,则这个圆锥的底面圆的半径是( )
A.12cm B.6cm C.3cm D.2cm 【考点】圆锥的计算.
【分析】圆的半径为2,那么过圆心向AC引垂线,利用相应的三角函数可得AC的一半的长度,进而求得AC的长度,利用弧长公式可求得弧BC的长度,圆锥的底面圆的半径=圆锥的弧长÷2π.
【解答】解:作OD⊥AC于点D,连接OA, ∴∠OAD=45°,AC=2AD,
∴AC=2(OA×cos45°)=12cm, ∴
=6
π
π÷(2π)=3
cm.
∴圆锥的底面圆的半径=6故选C.
二、填空题(本题共5小题,每小题3分,共15分) 13.分解因式:(m+1)(m﹣9)+8m= (m+3)(m﹣3) . 【考点】因式分解-运用公式法.
【分析】先利用多项式的乘法运算法则展开,合并同类项后再利用平方差公式分解因式即可.
【解答】解:(m+1)(m﹣9)+8m, =m2﹣9m+m﹣9+8m, =m2﹣9, =(m+3)(m﹣3).
第10页(共21页)
故答案为:(m+3)(m﹣3).
14.为了改善办学条件,学校购置了笔记本电脑和台式电脑共100台,已知笔记本电脑的台数比台式电脑的台数的还少5台,则购置的笔记本电脑有 16 台.
【考点】一元一次方程的应用.
【分析】设购置的笔记本电脑有x台,则购置的台式电脑为台.根据笔记本电脑的台数比台式电脑的台数的还少5台,可列出关于x的一元一次方程,解方程即可得出结论. 【解答】解:设购置的笔记本电脑有x台,则购置的台式电脑为台, 依题意得:x=﹣5,即20﹣x=0, 解得:x=16.
∴购置的笔记本电脑有16台. 故答案为:16.
15.荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是
.
【考点】列表法与树状图法. 【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与刚好抽到一男一女的情况,再利用概率公式即可求得答案. 【解答】解:画树状图如下:
由树状图可知共有20种等可能性结果,其中抽到一男一女的情况有12种, 所以抽到一男一女的概率为P(一男一女)=故答案为:.
16.两个全等的三角尺重叠放在△ACB的位置,将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,AB与CE相交于点F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,则CF= 2 cm.
,
第11页(共21页)
【考点】旋转的性质.
【分析】利用旋转的性质得出DC=AC,∠D=∠CAB,再利用已知角度得出∠AFC=90°,再利用直角三角形的性质得出FC的长.
【解答】解:∵将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,
∴DC=AC,∠D=∠CAB, ∴∠D=∠DAC,
∵∠ACB=∠DCE=90°,∠B=30°, ∴∠D=∠CAB=60°, ∴∠DCA=60°, ∴∠ACF=30°, 可得∠AFC=90°,
∵AB=8cm,∴AC=4cm, ∴FC=4cos30°=2(cm). 故答案为:2.
17.如图,已知点A(1,2)是反比例函数y=图象上的一点,连接AO并延长交双曲线的另一分支于点B,点P是x轴上一动点;若△PAB是等腰三角形,则点P的坐标是 (﹣3,0)或(5,0)或(3,0)或(﹣5,0) .
【考点】反比例函数图象上点的坐标特征;等腰三角形的性质.
【分析】由对称性可知O为AB的中点,则当△PAB为等腰三角形时只能有PA=AB或PB=AB,设P点坐标为(x,0),可分别表示出PA和PB,从而可得到关与x的方程,可求得x,可求得P点坐标. 【解答】解:
∵反比例函数y=图象关于原点对称,
∴A、B两点关于O对称,
∴O为AB的中点,且B(﹣1,﹣2),
∴当△PAB为等腰三角形时有PA=AB或PB=AB,
第12页(共21页)
共分享92篇相关文档