当前位置:首页 > 角的概念的推广·双基能力训练
D.以上结论都不对 答:A
解:∵终边在直线y=x(x>0)的角为α1=k2360°+45°(k∈Z)终边在直线y=x(x<0)上的角为α2=k2360°+225°(k∈Z)α1=2k2180°+45°,α2=2k2180°+180°+45°(k∈Z)α2=(2k+1)2180°+45°(k∈Z)
∴α=k2180°+45°(k∈Z).
9.一条弦的长等于半径,则这条弦所对的四周角的弧度数为 [ ]
答:C
10.若1弧度的圆心角,所对的弦长等于2,则这圆心角所对的弧长等于 [ ]
答:C
解:∵1弧度的圆心角所对的弧长等于半径,设半径为R,R2
11.已知函数y=sinx2cosx2tgx>0,则x应是 [ ] A.x∈R且x≠2kπ(k∈Z) B.x∈R且x≠kπ(k∈Z)
D.以上都不对 答:C
[ ]
A.0个 B.1个 C.2个 D.多于2个 答:C
13.锐角α终边上一点A的坐标为(2sin3,-2cos3),则角α的弧度数为 [ ]
A.3 C.-3
答:D
14.在△ABC中,下列函数值中可以是负值的是 [ ]
A.sinA
D.tgA 答:D
终边上,则有 A.sinα<sinβ B.sinα=sinβ C.sinα>sinβ D.以上皆非 答:B
共分享92篇相关文档