云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 高中数学选修2-1同步练习-3.1.2空间向量的数乘运算word版含答案

高中数学选修2-1同步练习-3.1.2空间向量的数乘运算word版含答案

  • 62 次阅读
  • 3 次下载
  • 2025/6/15 11:36:58

3.1.2空间向量的数乘运算

一、选择题(每小题5分,共20分)

1.对于空间中任意三个向量a,b,2a-b,它们一定是( ) A.共面向量 C.不共面向量 答案: A

2.当|a|=|b|≠0,且a,b不共线时,a+b与a-b的关系是( ) A.共面 C.共线

B.不共面 D.无法确定 B.共线向量

D.既不共线也不共面向量

解析: 由加法法则知:a+b与a-b可以是菱形的对角线. 答案: A

→→1→1→3.已知点M在平面ABC内,并且对空间任意一点O, OM=xOA+OB+OC,则x的值为( )

33

A.3 1

C. 3

B.0 D.1

111→→1→1→解析: ∵OM=xOA+OB+OC,且M、A、B、C四点共面,∴x++=1,x=.故选C.

33333答案: C

4.已知两非零向量e1,e2不共线,设a=λe1+μe2(λ、μ∈R且λ+μ≠0),则( ) A.a∥e1

C.a与e1,e2共面

B.a∥e2

D.以上三种情况均有可能

2

2

解析: 当λ=0,μ≠0时,a=μe2,则a∥e2; 当λ≠0,μ=0时,a=λe1,则a∥e1; 当λ≠0,μ≠0时,a与e1,e2共面. 答案: D

二、填空题(每小题5分,共10分)

5.已知O是空间任一点,A、B、C、D四点满足任三点均不共线,但四点共面,且OA=2xBO+3yCO+4zDO,则2x+3y+4z=________.

→→→→→→→→解析: ∵A、B、C、D共面,∴OA=OB+λBC+μBD

=OB+λ(OC-OB)+μ(OD-OB) =(1-λ-μ) OB+λOC+μOD

→→→→→→→→=(λ+μ-1) BO-λCO-μDO =2xBO+3yCO+4zDO,

∴2x+3y+4z=(λ+μ-1)+(-λ)+(-μ) =-1. 答案: -1

→→→→→→→→→

6.已知A,B,C三点共线,则对空间任一点O,存在三个不为0的实数λ,m,n,使λOA+mOB+nOC=0,那么λ+m+n的值为________.

解析: ∵A,B,C三点共线,∴存在唯一实数k使AB=kAC,

→→→→→→即OB-OA=k(OC-OA), →→

∴(k-1) OA+OB-kOC=0,

→→→

又λOA+mOB+nOC=0, 令λ=k-1,m=1,n=-k, 则λ+m+n=0. 答案: 0

三、解答题(每小题10分,共20分)

7.已知矩形ABCD,P为平面ABCD外一点,M、N分别为BC、PD的

中点,求满足

→→→→MN=xAB+yAD+zAP的实数x,y,z的值.

解析: MN=MC+CD+DN 1→→1→=BC+BA+DP 221→→1→→=AD-AB+(AP-AD) 22

→→→→→1→=-AB+AP,

2

1

∴x=-1,y=0,z=.

2

8.如图,平行六面体ABCD-A1B1C1D1中,M是AD1中点,N是BD中点,判断MN与

→D1C是否共线?

解析: ∵M,N分别是AD1,BD的中点,四边形ABCD为平行四则N为AC的中点.

边形,连结AC,

1→→→→1→1→1→→

∴MN=AN-AM=AC-AD1=(AC-AD1)=D1C

2222

→→

∴MN与D1C共线.

尖子生题库☆☆☆

9.(10分)如图,若P为平行四边形ABCD所在平面外一点,点H为PC上的点, 且

PH1AG=,点G在AH上,且=m.若G,B,P,D四点共面,求m的值. HC2AH

解析: 连结BD,BG, ∵AB=PB-PA且AB=DC, ∴DC=PB-PA. ∵PC=PD+DC,

∴PC=PD+PB-PA=-PA+PB+PD. ∵

→→→→→→→→→→→→→→→→→→PH1=, HC2

→1→1→→→∵PH=PC=(-PA+PB+PD)

33

1→1→1→=-PA+PB+ PD.

333又∵AH=PH-PA, 4→1→1→→∴AH=-PA+PB+PD.

333∵

→→→AG=m, AH4m→m→m→→→∴AG=mAH=-PA+ PB+PD.

333∴BG=-AB+AG=PA-PB+AG,

→→→→→→→?4m?→?m?→m→∴BG=?1-?PA+?-1?PB+PD.

3?3??3?

又∵B,G,P,D四点共面,

4m∴1-=0,

33∴m=. 4

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

3.1.2空间向量的数乘运算 一、选择题(每小题5分,共20分) 1.对于空间中任意三个向量a,b,2a-b,它们一定是( ) A.共面向量 C.不共面向量 答案: A 2.当|a|=|b|≠0,且a,b不共线时,a+b与a-b的关系是( ) A.共面 C.共线 B.不共面 D.无法确定 B.共线向量 D.既不共线也不共面向量 解析: 由加法法则知:a+b与a-b可以是菱形的对角线. 答案: A →→1→1→3.已知点M在平面ABC内,并且对空间任意一点O, OM=xOA+OB+OC,则x的值为( ) 33A.3 1C. 3B.0 D.1 111→→1→1→解析

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com