当前位置:首页 > 标准偏差与相对标准偏差资料 - 图文
标准偏差
标准偏差(也称标准离差或均方根差)是反映一组测量数据离散程度的统计指标。是指统计结果在某一个时段内误差上下波动的幅度。是正态分布的重要参数之一。是测量变动的统计测算法。它通常不用作独立的指标而与其它指标配合使用。
标准偏差在误差理论、质量管理、计量型抽样检验等领域中均得到了广泛的应用。因此, 标准偏差的计算十分重要, 它的准确与否对器具的不确定度、测量的不确定度以及所接收产品的质量有重要影响。然而在对标准偏差的计算中, 不少人不论测量次数多少, 均按贝塞尔公式计算。
样本标准差的表示公式
数学表达式:
? S-标准偏差(%)
? n-试样总数或测量次数,一般n值不应少于20-30个 ? i-物料中某成分的各次测量值,1~n;
标准偏差的使用方法
z
? 在价格变化剧烈时,该指标值通常很高。 ? 如果价格保持平稳,这个指标值不高。
? 在价格发生剧烈的上涨/下降之前,该指标值总是很
低。
标准偏差的计算步骤
标准偏差的计算步骤是:
步骤一、(每个样本数据 - 样本全部数据之平均值)2。 步骤二、把步骤一所得的各个数值相加。
步骤三、把步骤二的结果除以 (n - 1)(“n”指样本数目)。 步骤四、从步骤三所得的数值之平方根就是抽样的标准偏差。
六个计算标准偏差的公式[1]
标准偏差的理论计算公式
设对真值为X的某量进行一组等精度测量, 其测得值为l1、l2、……ln。令测得值l与该量真值X之差为真差占σ, 则有 σ1 = li ? X σ2 = l2 ? X …… σn = ln ? X
我们定义标准偏差(也称标准差)σ为
(1)
由于真值X都是不可知的, 因此真差σ占也就无法求得, 故式只有理论意义而无实用价值。
标准偏差σ的常用估计—贝塞尔公式
由于真值是不可知的, 在实际应用中, 我们常用n次测量的算术平均值
来代表真值。理论上也证明, 随着测量次数的增多, 算
术平均值最接近真值, 当
时, 算术平均值就是真值。
于是我们用测得值li与算术平均值之差——剩余误差(也叫残差)Vi来代替真差σ , 即
设一组等精度测量值为l1、l2、……ln
则
……
通过数学推导可得真差σ与剩余误差V的关系为
将上式代入式(1)有
(2)
式(2)就是著名的贝塞尔公式(Bessel)。
它用于有限次测量次数时标准偏差的计算。由于当
时,
,可见贝塞尔公式与σ的定义式(1)是完全一致的。
应该指出, 在n有限时, 用贝塞尔公式所得到的是标准偏差σ的一个估计值。它不是总体标准偏差σ。因此, 我们称式(2)为标准偏差σ的常用估计。为了强调这一点, 我们将σ的估计值用“S ” 表示。于是, 将式(2)改写为
(2')
在求S时, 为免去求算术平均值的麻烦, 经数学推导(过程从略)有
于是, 式(2')可写为
(2\
按式(2\求S时, 只需求出各测得值的平方和可。
和各测得值之和的平方艺 , 即
标准偏差σ的无偏估计
数理统计中定义S2为样本方差
数学上已经证明S2是总体方差σ2的无偏估计。即在大量重复试验中, S2围绕σ2散布, 它们之间没有系统误差。而式(2')在n有限时,S并不是总体标准偏差σ的无偏估计, 也就是说S和σ之间存在系统误差。概率统计告诉我们, 对于服从正态分布的正态总体, 总体标准偏差σ的无偏估计值为
(3)
共分享92篇相关文档