云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > §13.2 一致收敛函数列与函数项级数的性质 数学分析课件(华师大 四版) 高教社ppt 华东师大教材配套课件 - 图文

§13.2 一致收敛函数列与函数项级数的性质 数学分析课件(华师大 四版) 高教社ppt 华东师大教材配套课件 - 图文

  • 62 次阅读
  • 3 次下载
  • 2025/5/29 18:17:28

§2一致收敛函数列与函数项级数的性质极限交换定理连续性可积性可微性

例1 设函数

1?2n?x,0?x?,n?2n?11?fn(x)??2?n?2n?nx,?x?,2nn?1?0,?x?1,?n?yn?1,2,?.显然{fn(x)}是[0,1]上的连续函数列且对任意

,

x?[0,1], limfn(x)?0.n??数学分析第十三章函数列与函数项级数高等教育出版社?nfn图13?6O12n1n1x§2一致收敛函数列与函数项级数的性质极限交换定理连续性可积性可微性

又sup|fn(x)?0|??n,因此{fn(x)}在[0,1]上一致

x?[0,1]收敛于0 的充要条件是?n?0(n??). 因为?fn(x)dx?01?n2n,故

?10fn(x)dx??f(x)dx?0012n{fn(x)}不一致收敛于f(x), 但定理13.10 的结论仍

n??的充要条件是lim?n?0. 这样,当?n?1时,虽然

成立. 但当?n=n时, {fn(x)}不一致收敛于f(x).111同时?fn(x)dx?也不收敛于?f(x)dx?0.002例1说明当{fn(x)}收敛于f(x) 时,一致收敛性是极限运算与积分运算交换的充分条件, 不是必要条件.

数学分析第十三章函数列与函数项级数高等教育出版社§2一致收敛函数列与函数项级数的性质极限交换定理连续性可积性可微性

定理13.11(可微分性)设{fn}为定义在[a, b]上的函数列, 若x0?[a,b]为{fn}{fn}的每一项在[a,b]上有连续的导数{fn?},的收敛点,且{fn?}在[a, b]上一致收敛,则ddlimfn(x)?limfn(x).(4)n??dxdxn????证设limfn(x0)?A,g为f?在[a,b]上的极限函数,n??总有由定理条件, 对任一x?[a,b],fn(x)?fn(x0)??fn?(t)dt.x0xx当n??时,右边第一项?A,第二项??xg(t)dt.0数学分析第十三章函数列与函数项级数高等教育出版社§2一致收敛函数列与函数项级数的性质极限交换定理连续性可积性可微性所以上式左边极限存在, 记为f,于是

f(x)?limfn(x)?A??g(t)dt.n??x0x由g 的连续性及微积分学基本定理得

f??g.这就证明了等式(4).

推论设函数列定义在区间上,若为的收敛点且在上内闭一致收敛,则在上可导,且f?(x)?limfn?(x).n??数学分析第十三章函数列与函数项级数高等教育出版社

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

§2一致收敛函数列与函数项级数的性质极限交换定理连续性可积性可微性例1 设函数1?2n?x,0?x?,n?2n?11?fn(x)??2?n?2n?nx,?x?,2nn?1?0,?x?1,?n?yn?1,2,?.显然{fn(x)}是[0,1]上的连续函数列且对任意, x?[0,1], limfn(x)?0.n??数学分析第十三章函数列与函数项级数高等教育出版社?nfn图13?6O12n1n1x§2一致收敛函数列与函数项级数的性质极限交换定理连续性可积性可微性又sup|fn(x)?0|??n,因此{fn(x)}在[0,1]上一致x?[0,1]收敛于0 的充要条件是?n?0(n??). 因为?fn(x)dx?01?n2n,故?10fn(x)dx??f(x)dx?0012n{fn(x)}不一致收

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com