当前位置:首页 > 2015年全国统一高考数学试卷(理科)(新课标i)
参与本试卷答题和审题的老师有:刘长柏;qiss;maths;changq;caoqz;翔宇老师;cst;lincy;吕静;双曲线;whgcn;沂蒙松(排名不分先后) 菁优网
2016年6月6日
第25页(共45页)
考点卡片
1.命题的否定 【知识点的认识】
命题的否定就是对这个命题的结论进行否认.(命题的否定与原命题真假性相反)命题的否命题就是对这个命题的条件和结论进行否认.(否命题与原命题的真假性没有必然联系).?P不是命题P的否命题,而是命题P的否定形式.对命题“若P则Q“来说,?P是“若P则非Q”;P的否命题是“若非P则非Q”
注意两个否定:“不一定是”的否定是“一定是”; “一定不是”的否定是“一定是”.
【解题方法点拨】若p则q,那么它的否命题是:若?p则?q,命题的否定是:若p则?q.注意两者的区别.
全(特)称命题的否定命题的格式和方法;要注意两点:1)全称命题变为特称命题;2)只对结论进行否定.将量词“?”与“?”互换,同时结论否定.
【命题方向】命题存在中学数学的任意位置,因此命题的范围比较广,涉及知识点多,多以小题形式出现,是课改地区常考题型.
2.函数奇偶性的性质 【知识点的认识】
①如果函数f(x)的定义域关于原点对称,且定义域内任意一个x,都有f(﹣x)=﹣f(x),那么函数f(x)就叫做奇函数,其图象特点是关于(0,0)对称.②如果函数f(x)的定义域关于原点对称,且定义域内任意一个x,都有f(﹣x)=f(x),那么函数f(x)就叫做偶函数,其图象特点是关于y轴对称. 【解题方法点拨】
①奇函数:如果函数定义域包括原点,那么运用f(0)=0解相关的未知量; ②奇函数:若定义域不包括原点,那么运用f(x)=﹣f(﹣x)解相关参数; ③偶函数:在定义域内一般是用f(x)=f(﹣x)这个去求解;
④对于奇函数,定义域关于原点对称的部分其单调性一致,而偶函数的单调性相反. 例题:函数y=x|x|+px,x∈R是( )
A.偶函数 B.奇函数 C.非奇非偶 D.与p有关 解:由题设知f(x)的定义域为R,关于原点对称. 因为f(﹣x)=﹣x|﹣x|﹣px=﹣x|x|﹣px=﹣f(x), 所以f(x)是奇函数. 故选B.
【命题方向】函数奇偶性的应用.
本知识点是高考的高频率考点,大家要熟悉就函数的性质,最好是结合其图象一起分析,确保答题的正确率.
3.函数的零点 【函数的零点】
第26页(共45页)
一般地,对于函数y=f(x)(x∈R),我们把方程f(x)=0的实数根x叫作函数y=f(x)(x∈D)的零点.即函数的零点就是使函数值为0的自变量的值.函数的零点不是一个点,而是一个实数. 【解法﹣﹣二分法】
①确定区间[a,b],验证f(a)*f(b)<0,给定精确度; ②求区间(a,b)的中点x1;③计算f(x1);
④若f(x1)=0,则x1就是函数的零点; ⑤若f(a)f(x1)<0,则令b=x1(此时零点x0∈(a,x1));⑥若f(x1)f(b)<0,则令a=x1.(此时零点x0∈(x1,b) ⑦判断是否满足条件,否则重复(2)~(4) 【总结】
零点其实并没有多高深,简单的说,就是某个函数的零点其实就是这个函数与x轴的交点,另外如果在(a,b)连续的函数满足f(a)?f(b)<0,则(a,b)至少有一个零点.这个考点属于了解性的,知道它的概念就行了.
4.利用导数研究函数的极值 【知识点的知识】 1、极值的定义:
(1)极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点;
(2)极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0),就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点.
2、极值的性质:
(1)极值是一个局部概念,由定义知道,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小;
(2)函数的极值不是唯一的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个;
(3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值; (4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点,而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点.
3、判别f(x0)是极大、极小值的方法:
若x0满足f′(x0)=0,且在x0的两侧f(x)的导数异号,则x0是f(x)的极值点,f(x0)是极值,并且如果f′(x)在x0两侧满足“左正右负”,则x0是f(x)的极大值点,f(x0)是极大值;如果f′(x)在x0两侧满足“左负右正”,则x0是f(x)的极小值点,f(x0)是极小值.
4、求函数f(x)的极值的步骤:
(1)确定函数的定义区间,求导数f′(x); (2)求方程f′(x)=0的根;
(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;
第27页(共45页)
如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f(x)在这个根处无极值.
【解题方法点拨】
在理解极值概念时要注意以下几点:
(1)按定义,极值点x0是区间[a,b]内部的点,不会是端点a,b(因为在端点不可导). (2)极值是一个局部性概念,只要在一个小领域内成立即可.要注意极值必须在区间内的连续点取得.一个函数在定义域内可以有许多个极小值和极大值,在某一点的极小值也可能大于另一个点的极大值,也就是说极大值与极小值没有必然的大小关系,即极大值不一定比极小值大,极小值不一定比极大值小.
(3)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间上单调的函数没有极值.
(4)若函数f(x)在[a,b]上有极值且连续,则它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点,一般地,当函数f(x)在[a,b]上连续且有有
限个极值点时,函数f(x)在[a,b]内的极大值点、极小值点是交替出现的,
(5)可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,不可导的点也可能是极值点,也可能不是极值点.
5.利用导数研究曲线上某点切线方程 【考点描述】
利用导数来求曲线某点的切线方程是高考中的一个常考点,它既可以考查学生求导能力,也考察了学生对导数意义的理解,还考察直线方程的求法,因为包含了几个比较重要的基本点,所以在高考出题时备受青睐.我们在解答这类题的时候关键找好两点,第一找到切线的斜率;第二告诉的这点其实也就是直线上的一个点,在知道斜率的情况下可以用点斜式把直线方程求出来. 【实例解析】
例:已知函数y=xlnx,求这个函数的图象在点x=1处的切线方程. 解:k=y'|x=1=ln1+1=1
又当x=1时,y=0,所以切点为(1,0) ∴切线方程为y﹣0=1×(x﹣1), 即y=x﹣1.
我们通过这个例题发现,第一步确定切点;第二步求斜率,即求曲线上该点的导数;第三步利用点斜式求出直线方程.这种题的原则基本上就这样,希望大家灵活应用,认真总结.
6.导数在最大值、最小值问题中的应用 【知识点的知识】
一、利用导数求函数的极值 1、极大值 一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),就说f(x0)是函数的一个极大值,记作y极大值=f(x0),是极大值点. 2、极小值
第28页(共45页)
共分享92篇相关文档