云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 离散数学试题及答案

离散数学试题及答案

  • 62 次阅读
  • 3 次下载
  • 2025/6/15 9:46:05

若e为割边,则G?有两个连通分支G1和G2。Gi的结点数、边数和面数分别为ni、mi和ri。显然n1+n2=n?=n,m1+m2=m?=m-1,r1+r2=r?+1=r+1。由归纳假设有n1-m1+r1=2,n2-m2+r2=2,从而(n1+n2)-(m1+m2)+(r1+r2)=4,n-(m-1)+(r+1)=4,即n-m+r=2。

若e不为割边,则n?=n,m?=m-1,r?=r-1,由归纳假设有n?-m?+r?=2,从而n-(m-1)+r-1=2,即n-m+r=2。

由数学归纳法知,结论成立。

七、(10分)设函数g:A→B,f:B→C,则: (1)f?g是A到C的函数;

(2)对任意的x∈A,有f?g(x)=f(g(x))。

证明 (1)对任意的x∈A,因为g:A→B是函数,则存在y∈B使∈g。对于y∈B,因f:B→C是函数,则存在z∈C使∈f。根据复合关系的定义,由∈g和∈f得∈g*f,即∈f?g。所以Df?g=A。

对任意的x∈A,若存在y1、y2∈C,使得∈f?g=g*f,则存在t1使得∈g且∈f,存在t2使得∈g且∈f。因为g:A→B是函数,则t1=t2。又因f:B→C是函数,则y1=y2。所以A中的每个元素对应C中惟一的元素。

综上可知,f?g是A到C的函数。

(2)对任意的x∈A,由g:A→B是函数,有∈g且g(x)∈B,又由f:B→C是函数,得∈f,于是∈g*f=f?g。又因f?g是A到C的函数,则可写为f?g(x)=f(g(x))。

八、(15分)设的子群,定义R={|a、b∈G且a1*b∈H},则R是

G中的一个等价关系,且[a]R=aH。

证明 对于任意a∈G,必有a1∈G使得a1*a=e∈H,所以∈R。

∈R,则a1*b∈H。因为H是G的子群,故(a1*b)1=b1*a∈H。所以∈R。

∈R,∈R,则a1*b∈H,b1*c∈H。因为H是G的子群,所以(a1*b)*(b

1

*c)=a1*c∈H,故∈R。

综上可得,R是G中的一个等价关系。

对于任意的b∈[a]R,有∈R,a1*b∈H,则存在h∈H使得a1*b=h,b=a*h,于是

b∈aH,[a]R?aH。对任意的b∈aH,存在h∈H使得b=a*h,a1*b=h∈H,∈R,故aH?[a]R。

所以,[a]R=aH。

第 17 页 共 17 页

搜索更多关于: 离散数学试题及答案 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

若e为割边,则G?有两个连通分支G1和G2。Gi的结点数、边数和面数分别为ni、mi和ri。显然n1+n2=n?=n,m1+m2=m?=m-1,r1+r2=r?+1=r+1。由归纳假设有n1-m1+r1=2,n2-m2+r2=2,从而(n1+n2)-(m1+m2)+(r1+r2)=4,n-(m-1)+(r+1)=4,即n-m+r=2。 若e不为割边,则n?=n,m?=m-1,r?=r-1,由归纳假设有n?-m?+r?=2,从而n-(m-1)+r-1=2,即n-m+r=2。 由数学归纳法知,结论成立。 七、(10分)设函数g:A→B,f:B→C,则: (1)f?g是A到C的函数; (2)对任意的x∈A,有f?g(x)=f(g(x))。 证明 (1)对任意的x∈A,因为g:A→B是函数,则存在y∈B使∈g。

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com