云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 广东省佛山市南海区桂城中学等七校联合体2019届高三冲刺模拟数学(文)试题含答案

广东省佛山市南海区桂城中学等七校联合体2019届高三冲刺模拟数学(文)试题含答案

  • 62 次阅读
  • 3 次下载
  • 2025/6/15 11:03:47

(一)必考题:共60分。

17.【命题意图】本题考查解三角形的基础知识和基本运算,中等题. 【解】

2?,根据余弦定理:a2?b2?c2?2bccosA, tanA??3,A?(0,?),?A?(1)3得:19?9?c2?2?3?c?(?),根据正弦定理:

12c2?3c?10?0,c?2,c??5(舍去), (3分)

ac19257?,?,?sinC?sinAsinC19 3sinC257; (6分) 19综上,c?2,sinC?(2)由sinC?357AD33,得出tanC?tanC?,?AD?△ADC,在直角中,, (9分) 419AC41?13313333(12分) ?S?ABD??AB?AD?sin??2???△ABD的面积为,即2624288 .

18.【命题意图】本题考查立体几何的线面位置关系,几何作图,直线与平面所成角的计算,中等题. 【解】

(1)过点M在平面A1B1C1D1内作一条直线B1D1即为所求. (2分) 理由如下:

连接C1M,在直角△CC1M中,可计算C1M?CM2?CC12?2. 又A1M?2,A1C1?22,所以点M是A1C1的中点,

所以B1D1?C1M,B1D1?CC1,C1MICC1?C1,所以B1D1?平面CC1M,进而可得B1D1?CM. (6分) (2)连接AC与BD交于点O,易证AC?平面BDD1B1, 所以直线CM在平面BDD1B1内的射影是OM,

所以?CMO就是直线CM与平面BDD1B1所成角. (9分) 在VCMO中,cos?CMO?OM26. ??CM36D1MA1B1C1DCA第18题图

B故直线CM与平面BDD1B1所成角的余弦值为19. 解:令t?lnx则y?bt?a.

6. (12分) 3- 9 -

b???ti?110i?t(yi?y)i???ti?110?t?2?24.2?5, 4.84i155.515.1i?1y???15.55,t???1.51

10101010i?1?y10i?t10a?y?bt?15.55?5?1.51?8,

所以y关于t的回归方程为y?5t?8,

因为t?lnx,从而y关于x的回归方程为y?5lnx?8.

(2)由(1)得该IT从业者在36岁时月平均收入为: y?5ln11?8?5?2.4?8?20 (千元) 旧个税政策下缴交的个人所得税为:

1500?3%?3000?10%?4500?20%?(20000?3500?9000)?25%?3120(元)

新个税政策下缴交的个人所得税为:

1500?3%?3000?10%?(20000?5000?3000?3000)?10%?990(元)

故根据新旧个税政策,该IT从业者在36岁时每个月少缴交的个人所得税为

3120?990?2130(元).

20.(1)【解析】:依题意设直线l1的方程为y?x?p, ··············································· 1分 22(x+1)+y2?2的圆心C2(?1,0),半径r?2 ···························· 2分 由已知得:圆C2:

因为直线l1与圆C2相切,

p|p2所以圆心到直线l1:y?x?的距离d?··································· 3分 ?2. ·

2221?(?1)|?1?|?1?p|2?2,解得p?6或p??2(舍去).: ··············································· 4分

即2所以p?6. ·································································································· 5分

xx2(m,?3),(2)解法一:依题意设M由(1)知抛物线C1方程为x?12y,所以y?,所以y??,设A(x1,y1),

126x则以A为切点的切线l2的斜率为k?1, ·································································· 6分

61所以切线l2的方程为y?x1(x?x1)?y1. ································································ 7分

62- 10 -

11令x?0,y??x12?y1=??12y1?y1=?y1,即l2交y轴于B点坐标为(0,?y1), ·········· 8分

66所以MA?(x1?m,y1?3), ····················································································· 9分 MB?(?m,?y1?3),···························································································· 10分

∴MN?MA?MB=(x1?2m,6), ·············································································· 11分 ∴ON?OM?MN?(x1?m,3). 设N点坐标为(x,y),则y?3,

所以点N在定直线y?3上. ·················································································· 12分 (2)解法二:设M(m,?3),由(1)知抛物线C1方程为x2?12y,① 设A(x1,y1),以A为切点的切线l2的方程为y?k(x?x1)?y1②, 联立①②得:x2?12[k(x?x1)?12··································································· 6分 x1], ·

12x1, 6因为?=144k2?48kx1?4x12?0,所以k=所以切线l2的方程为y?1······························································· 7分 x1(x?x1)?y1. ·

6令x?0,得切线l2交y轴的B点坐标为(0,?y1), ····················································· 8分 所以MA?(x1?m,y1?3), MB?(?m,?y1?3), ······················································· 10分 ∴MN?MA?MB=(x1?2m,6) ················································································· 11分 ∴ON?OM?MN?(x1?m,3), 设N点坐标为(x,y),则y?3,

所以点N在定直线y?3上. ·················································································· 12分

21.【命题意图】本题考查导数的综合应用,函数单调性及函数零点问题,考查学生运算能力及综合运用数学知识分析问题、解决问题的能力,较难题. x2【解】(1)当k?1时,f(x)?xe??x,

2x?f?(x)?(x?1)ex?(x?1)?(x?1)(ex?1),

故x?(??,?1),f/(x)?0,f(x)为增,

x?(?1,0),f/(x)?0,f(x)为减,

x?(0,??),f?(x)?0,f(x)为增,

- 11 -

故函数f(x)的单调增区间为(??,?1)和(0,??);单调减区间为(?1,0). (4分)

f(x)极大=f(?1)?11?,f(x)极小?f(0)?0. (5分) 2exx2(2)解法一:由已知,f(x)?kxe??x,g(x)?kex?x

2x2x2xx?F(x)?kxe??x?ke?x?k(x?1)e?

22x?F?(x)?kxex?x?x(kex?1)

①当k?0时,F(x)在(??,0)为增,在(0,??)为减,

且注意到F(0)??k?0,函数F(x)的图像两边向下无限伸展, 故此时F(x)存在两个零点,适合题意。 ②当k?0时,F(x)在(??,0)为增,在(0,??)为减,

且F(0)?0,故此时F(x)只有一个零点。

③当k?1时,?F/(x)?xex?x?x(ex?1),故函数(??,??)为增,易知函数F(x)只有一个零点 ④当k?(0,1)时,ln?0,F(x)在(??,0)为增,(0,ln)为减,(ln,??)为增,

且F(0)??k?0易知F(x)只有一个零点。

⑤当k?(1,??)时,ln?0,F(x)在(??,ln)为增,(ln,0)为减,(0,??)为增,

1(ln?1)2?11且F(ln)??k?0,F(0)??k?0易知F(x)只有一个零点。

k21k1k1k1k1k1k综上,k?(??,0)时,函数F(x)?f(x)?g(x)存在两个零点。 (12分) x2x2x2xx解法二:依题F(x)?kxe??x?ke?x?k(x?1)e??k(x?1)?2222ex来源:Zxxk.Com]

x2依题函数F(x)?f(x)?g(x)存在两个零点,即方程k(x?1)?2有两个根

2ex2也即直线y?k(x?1)与函数y?x的图像有两个交点

2ex2x(2?x)记h(x)?x?h?(x)?,

2e2ex由h?(x)?0?x(2?x)?0?0?x?2,由h?(x)?0?x(2?x)?0?x?0,x?2 故h(x)在(??,0)上单调递减,在(0,2)上单调递增,在(2,??)上单调递减 且h(0)?0,x?0时h(x)?0 又直线y?k(x?1)过(1,0),斜率为k

x2由图像观察知:当k?0时直线y?k(x?1)与h(x)?x的图像必有两个交点,

2ex2当k?0时直线y?k(x?1)与h(x)?x的图像只有一个交点

2e- 12 -

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

(一)必考题:共60分。 17.【命题意图】本题考查解三角形的基础知识和基本运算,中等题. 【解】 2?,根据余弦定理:a2?b2?c2?2bccosA, tanA??3,A?(0,?),?A?(1)3得:19?9?c2?2?3?c?(?),根据正弦定理:12c2?3c?10?0,c?2,c??5(舍去), (3分) ac19257?,?,?sinC?sinAsinC19 3sinC257; (6分) 19综上,c?2,sinC?(2)由sinC?357AD33,得出tanC?tanC?,?AD?△ADC,在直角中,, (9分) 419AC41?13313333(12分) ?S?ABD??AB?AD?s

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com