云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 2020年中考数学一轮复习培优训练:《反比例函数》及答案

2020年中考数学一轮复习培优训练:《反比例函数》及答案

  • 62 次阅读
  • 3 次下载
  • 2025/6/15 9:18:38

∴直线AO解析式为y=3x, ∵S△AEG=S△OFG ∴S△EFA=S△EFO ∴EF∥AO

∴直线l2的解析式为:y=3x+4;

②存在,点P坐标为:P(﹣1,1)或P(1,7). ∵S△PBC=S△OBC,

∴点P在经过点O或H平行于直线l1:y=﹣x+4的直线上,易得:y=﹣x或y=﹣x+8 分别解方程组

得:

∴点P的坐标为P(﹣1,1)或P(1,7). 10.解:(1)如图①,过B作BC⊥x轴于C,

∵OB=AB,BC⊥x轴, ∴OC=AC=OA, ∵点A的坐标为(6,0), ∴OA=6, ∴OC=AC=3, ∵点B在反比例函数y=(x>0)的图象上,

∴y=

=4,

∴B(3,4),

∵点A(6,0),点B(3,4)在y=kx+b的图象上, ∴

,解得:

29

∴直线AB的解析式为:y=﹣x+8; (2)如图①,∵∠OBA=90°,OB=AB, ∴△AOB是等腰直角三角形, ∴BC=OC=OA, 设点B(a,a)(a>0), ∵顶点B在反比例函数y=(x>0)的图象上, ∴a=,解得:a=(负值舍),

∴OC=2

∴OA=2OC=4,

∴A(4

,0);

(3)如图②,过P作PD⊥x轴于点D,

∵△PA1A是等腰直角三角形, ∴PD=AD,

设AD=m(m>0),则点P的坐标为(4+m,m),

∴m(4

+m)=12,

解得:x1=2﹣2,m2=﹣2﹣2

(负值舍去),∴A1A=2m=4

﹣4

, ∴OA1=OA+AA1=4, ∴点A1的坐标是(4

,0).

11.解:(1)∵A(﹣,0),B(0,2), ∴OA=,OB=2, ∵tan∠OAC=

=,

30

∴OC=1,BC=3, ∵BD=2OC, ∴BD=2, ∵BD⊥BC, ∴D(2,2),

把D(2,2)代入y=中,得到m=4, ∴反比例函数的解析式为y=.

(2)如图,设CD交x轴于K. ∵OK∥BD, ∴

, ∴=

∴OK=, ∵OC=1,OA=, ∴OC2=OA?OK, ∴

∵∠AOC=∠COK, ∴△AOC∽△COK, ∴∠OAC=∠OCK, ∵∠OAC+∠OCA=90°, ∴∠OCA+∠OCK=90°, ∴∠ACK=90°, ∴AC⊥CD.

(3)如图,作BH⊥CM于H. ∵A(﹣,0),C(0,﹣1),

31

∴直线AC的解析式为y=﹣x﹣1, ∵AE=BD=2, ∴OA=2+=,

∴E(﹣,0),∵B(0,2), ∴直线BE的解析式为y=x+2,

由解得,

∴M(﹣,), ∴CM=

,BM=

, ∵S△BCM=×3×=×

×BH,

∴BH=,

∴MH=

=,

∴tan∠BMC===2.

12.解:(1)如图1中,连接PO,延长PO到K. 32

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

∴直线AO解析式为y=3x, ∵S△AEG=S△OFG ∴S△EFA=S△EFO ∴EF∥AO ∴直线l2的解析式为:y=3x+4; ②存在,点P坐标为:P(﹣1,1)或P(1,7). ∵S△PBC=S△OBC, ∴点P在经过点O或H平行于直线l1:y=﹣x+4的直线上,易得:y=﹣x或y=﹣x+8 分别解方程组或得:或 ∴点P的坐标为P(﹣1,1)或P(1,7). 10.解:(1)如图①,过B作BC⊥x轴于C, ∵OB=AB,BC⊥x轴, ∴OC=AC=OA, ∵点A的坐标为(6,0), ∴OA=6, ∴OC=AC=3, ∵点B在反比例函数y=(x>0)的图象上, ∴y==4, ∴B(

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com