当前位置:首页 > 一次函数复习试题2
综合、运用、诊断
12.依据给定的条件,求一次函数的解析式.
(1)已知一次函数的图象如图4-5所示,求此一次函数的解析式,并判断点(6,5)是否在此函
数图象上.
图4-5
(2)已知一次函数y=2x+b的图象与y轴的交点到x轴的距离是4,求其函数解析式.
拓展、探究、思考 13.已知函数y?(2m?1)x3m2?2?(n?2).
(1)当m、n为何值时,其图象是过原点的直线;
(2)当m、n为何值时,其图象是过(0,4)点的直线;
(3)当m、n为何值时,其图象是一条直线且y随x的增大而减小.
14.依据给定的条件,求一次函数解析式.
(1)当-1≤x≤1时,-2≤y≤4.
13
(2)y=1与x成正比例,且x=2时,y=4.
(3)y=ax+7经过一次函数y=4-3x和y=2x-1的交点.
(4)正比例函数的图象与一次函数的图象交于点(3,4),两图象与y轴围成的三角形面积为
15,求这两个函数的解析式.
14
2
测试5 一次函数(二)
学习要求
对一次函数的概念及性质有进一步认识,利用函数的图象解决与一次函数有关的问题,还能运用所学的函数知识解决简单的实际问题.
课堂学习检测
一、填空题
1.作出y=-2x+4的图象并利用图象回答问题:
(1)当x=-3时,y=______;当y=-3时,x=______. (2)图象与坐标轴的两个交点的坐标分别是______. (3)图象与坐标轴围成的三角形面积等于______. (4)当y<0时,x的取值范围是______.
当y=0时,x的值是______.
当y>0时,x的取值范围是______.
(5)若-2≤y≤2时,则x的取值范围是______. (6)若-2≤x≤2时,则y的取值范围是______. (7)图象与直线y=x+2的交点坐标为______. (8)当x______时,x+2<-2x+4;
(9)图象与直线y=x+2和y轴围成的三角形的面积为______.
(10)若过点(0,-1)作与直线y=x+2平行的直线,交函数y=-2x+4的图象于P点,则P点
的坐标是______.
综合、运用、诊断
一、解答题
2.如图5-1,大拇指与小拇指尽量张开时,两指尖的距离称为指距.某项研究表明,一般情况下人的身高h是指距d的一次函数.下表是测得的指距与身高的数据:
指距d(cm) 身高h(cm) 20 160 22 178 (1)求出h与d之间的函数关系式(不要求写出自变量d的取值范围); (2)某人身高为196cm,一般情况下他的指距应是多少?
图5-1
3.某造纸厂污水处理的剩余污水随着时间的增加而减少,剩余污水量V(万米3)与污水处理时间(t天)
15
的关系如图5-2所示,
(1)由图象求出剩余污水量V(万米3)与污水处理时间t(天)之间的函数解析式; (2)污水处理连续10天,剩余污水还有多少万立方米?
(3)按照图中的规律,若想将全部污水处理干净,需要连续处理污水多少天? (4)平均一天可处理污水多少万立方米?
图5-2
拓展、探究、思考
4.某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如下表:
类别 进价(元/台) 售价(元/台) 电视机 1800 2000 洗衣机 1500 1600 计划购进电视机和洗衣机共100台,商店最多可筹集资金161800元.
(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其他费用)
(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利
润=售价-进价)
5.某面粉厂有工人20名,为获得更多利润,增设加工面条项目,用本厂生产的面粉加工成面条(生产1kg面条需用面粉1kg).已知每人每天平均生产面粉600kg,或生产面条400kg.将面粉直接出售每千克可获利润0.2元,加工成面条后出售每千克面条可获利0.6元,若每个工人一天只能做一项工作,且不计其他因素,设安排x名工人加工面条 (1)求一天中加工面条所获利润y1(元); (2)求一天中剩余面粉所获利润y2(元);
(3)当x为何值时,该厂一天中所获总利润y(元)最大?最大利润为多少元?
16
共分享92篇相关文档