当前位置:首页 > 力学中三种常见力及物体的平衡
繁小星整理
考点:平面镜成像作图 .................................................. 45 考点:发生折射的两个面平行,则出射光线与入射光线平行。 ................ 45 考点:介质的折射率测定的方法 .......................................... 45 考点:全反射的应用—光导纤维 .......................................... 46 考点:各量的变化关系 .................................................. 47 光的干涉.................................................................. 47
考点1:双缝干涉原理 .................................................. 47 考点2:薄膜干涉及其应用 .............................................. 48 光电效应.................................................................. 48 能级 ..................................................................... 49 原子物理.................................................................. 50
一、原子的核式结构 .................................................... 50 二、天然放射现象、衰变 ................................................ 50 三、半衰期的计算 ...................................................... 50 四、核反应方程 ........................................................ 50 五、核能的计算 .. .. . . . .. . . . . . . . . . . . . . . . . . .. . . . . 50
力学中三种常见力及物体的平衡 1、力的概念的理解 (1)力的本质
①力的物质性②力的相互性③力的矢量性④力作用的独立性 (2)力的效果
一是使物体发生形变;二是改变物体的运动状态。(即产生加速度) ①力作用的瞬时效果——产生加速度a=F/m
②力的作用在时间上的积累效果——力对物体的冲量I=Ft
③力的作用在空间上的积累效果——力对物体做的功W=Fscosα。 (3)力的三要素:大小、方向、作用点。
①两个力相等的条件:力的大小相等,方向相同。 (4)力的分类 ①性质力②效果力 2、对重力概念理解
(1)重力是地球对物体的万有引力的一个分力。 (2)重力加速度g
①地球表面的重力加速度在赤道上最小,两极最大。(G2MmR2?mg)
?R?②海拔越高重力加速度越小。(g????g)
?R?h?(3)重心—重力的作用点叫做物体的重心。
①质量分布均匀、形状规则的物体其重心在物体的几何中心上。
②悬挂的物体,绳子的拉力必过物体的重心,和物体的重力构成一对平衡力。
5
繁小星整理
3、弹力
(1)弹力产生的条件:①相互接触②有弹性形变
(2)方向:与物体形变的方向相反,受力物体是引起形变的物体,施力物体是发生形变的物体。
(3)弹力的大小的计算
①根据平衡条件②根据动力学规律(牛顿第二定律) ③根据公式:F=kx、ΔF=KΔx
④控制变量法处理多弹簧形变引起的物体的位置的改变问题。 4、摩擦力
(1)摩擦力产生的条件:①接触面粗糙②有压力③有相对运动(或相对运动趋势) (2)静摩擦力的方向 ①假设法②反推法
(3)静摩擦力的大小(其数值在0到最大静摩擦力之间。) ①根据平衡条件②根据动力学规律 (4)滑动摩擦力的方向
滑动摩擦力的方向与物体相对运动方向相反是判断滑动摩擦力方向的依据。 (5)滑动摩擦力的大小 根据公式F=μN计算。
滑动摩擦力的大小与物体的运动速度、接触面的面积没有关系。 力的合成与分解、共点力作用下物体的平衡 1、合力与分力
合力与分力是等效替代关系 F2
F 2、平行四边形定则
θ F1 F3F1F2相关数学知识:①正弦定理: ??sin?1sin?2sin?3F2 F1
②余弦定理:F?F12?F22?2F1F2cos?
3、合力的范围∣F1-F2∣≤F≤F1+F2
应用判断物体在受到三个力或三个以上力能否平衡问题即合力能否为零。 4、三角形法则
①矢量三角形中的等效替代关系 ②用矢量三角形求极值问题 若物体受到三个力的作用时,该三个力依次首尾相接构成三角形,则该物体所受合力为零。
若物体受到三个力的作用始终处于平衡状态,且一个力为恒力,
θ 一个力的方向不变,另一个力的变化引起的各力的变化情况,可由三角形法则判断。
图
5、力的分解的唯一性
将一个已知力F进行分解,其解是不唯一的。要得到唯一的解,必须另外考虑唯一性条件。常见的唯一性条件有:
(1).已知两个不平行分力的方向,可以唯一的作出力的平行四边形,对力F进行分解,其解是唯一的。
(2)已知一个分力的大小和方向,可以唯一的作出力的平行四边形,对力F进行分
6
繁小星整理
解,其解是唯一的。
6、力的分解有两解的条件:
(1).已知一个分力F1的方向和另一个分力F2的大小,由图9可知: 当F2=Fsin?时,分解是唯一的。 当Fsin?
F (2).已知两个不平行分力的大小。如图10所示,分
,别以F的始端、末端为圆心,以F1、F2为半径作圆,两圆有,F1 F2 两个交点,所以F分解为F1、F2有两种情况。存在极值的几种情况。
图10 ①已知合力F和一个分力F1的方向,另一个分力F2存在
最小值。
②已知合力F的方向和一个分力F1,另一个分力F2存在最小值。 7、共点力作用下物体平衡处理方法
要注意运用等效关系(合力与分力)注意运用力的几何关系。注意判断力的方向。 (1)整体法和隔离法 (2)合成与分解法 (3)正交分解法 (4)相似三角形法
(5)对称法在平衡中的应用
直线运动
一、匀变速直线运动公式
1.常用公式有以下四个:Vt?V0?at,s?V0t?12at, 2Vt2?V02?2as s?V0?Vtt 2⑴以上四个公式中共有五个物理量:s、t、a、V0、Vt,这五个物理量中只有三个是独立的,可以任意选定。只要其中三个物理量确定之后,另外两个就唯一确定了。每个公式中只有其中的四个物理量,当已知某三个而要求另一个时,往往选定一个公式就可以了。如果两个匀变速直线运动有三个物理量对应相等,那么另外的两个物理量也一定对应相等。
⑵以上五个物理量中,除时间t外,s、V0、Vt、a均为矢量。一般以V0的方向为正方向,以t=0时刻的位移为零,这时s、Vt和a的正负就都有了确定的物理意义。 应用公式注意的三个问题 (1)注意公式的矢量性
(2)注意公式中各量相对于同一个参照物 (3)注意减速运动中设计时间问题
2.匀变速直线运动中几个常用的结论
22
①Δs=aT ,即任意相邻相等时间内的位移之差相等。可以推广到sm-sn=(m-n)aT ②Vt?V0?Vt,某段时间的中间时刻的即时速度等于该段时间内的平均速度。
22V02?Vt2 ,某段位移的中间位置的即时速度公式(不等于该段位移内的平均速度)。 Vs?22 7
繁小星整理
可以证明,无论匀加速还是匀减速,都有Vt?Vs。
223.初速度为零(或末速度为零)的匀变速直线运动做匀变速直线运动的物体,如果初速度为零,或者末速度为零,那么公式都可简化为:
V?at , s?12Vat , V2?2as , s?t 22以上各式都是单项式,因此可以方便地找到各物理量间的比例关系。
4.初速为零的匀变速直线运动
①前1s、前2s、前3s??内的位移之比为1∶4∶9∶?? ②第1s、第2s、第3s??内的位移之比为1∶3∶5∶?? ③前1m、前2m、前3m??所用的时间之比为1∶2∶3∶?? ④第1m、第2m、第3m??所用的时间之比为1∶
?2?1∶(3?2)∶??
?5、自由落体运动是初速度为零的匀加速直线运动,竖直上抛运动是匀减速直线运动,可分向上的匀减速运动和竖直向下匀加速直线运动。 二、匀变速直线运动的基本处理方法 1、公式法
课本介绍的公式如vt?v0?at,s?v0t?1222at,2as?vt?v0等,有些题根据题目条件选2择恰当的公式即可。但对匀减速运动要注意两点,一是加速度在代入公式时一定是负值,二是题目所给的时间不一定是匀减速运动的时间,要判断是否是匀减速的时间后才能用。 2、比值关系法
初速度为零的匀变速直线运动,设T为相等的时间间隔,则有: ①T末、2T末、3T末??的瞬时速度之比为: v1:v2:v3:??vn=1:2:3:??:n
② T内、2T内、3T内??的位移之比为:
2
s1:s2:s3: ??:sn=1:4:9:??:n
③第一个T内、第二个T内、第三个T内??的位移之比为:
sⅠ:sⅡ:sⅢ:??:sN=1:3:5: ??:(2N-1)
初速度为零的匀变速直线运动,设s为相等的位移间隔,则有: ④前一个s、前两个s、前三个s??所用的时间之比为: t1:t2:t3:??:tn=1:2:3:??:n
⑤第一个s、第二个s、第三个s??所用的时间tⅠ、tⅡ、tⅢ ??tN之比为:
tⅠ:tⅡ:tⅢ :??:tN=1:
?2?1:??3?2?: ??:
?n?n?1
?3、平均速度求解法
在匀变速直线运动中,整个过程的平均速度等于中间时刻的瞬时速度,也等于初、末速度和
v?vts1?。求位移时可以利用:s?vt??v0?vt?t 的一半,即:v?vt?022t2 8
共分享92篇相关文档