当前位置:首页 > 高等无机化学-钙钛矿太阳能电池
通过蒸汽辅助平面异质结钙钛矿太阳能电池溶液处理
(Planar HeterojunctionPerovskite Solar Cells via Vapor-Assisted
Solution Process) 摘要:ABSTRACT:Hybrid organic/inorganic perovskites (e.g.,CH3NH3PbI3) as light absorbers are promising players inthe field of third-generation photovoltaics. Here wedemonstrate a low-temperature
vapor-assistedsolutionprocess to construct polycrystalline
perovskitethinfilmswith full surface coverage, small surface roughness, andgrain size up to microscale. Solar cells based on the aspreparedfilms achieve high power conversion efficiency of12.1%, so far the highest efficiency based on CH3NH3PbI3with the planar heterojunction
configuration. This methodprovides a simple approach to perovskitefilm preparationand paves the way for high reproducibility of films anddevices. The underlying kinetic and thermodynamicparameters regarding the perovskite film growth arediscussed as well.
摘要:有机/无机杂化材料(如,CH3NH3PbI3)吸收光线是一种很有前途的球员 第三代光伏领域。我们在这里演示低温蒸汽辅助溶液方法构建多晶钙钛矿薄膜 表面覆盖度,表面粗糙度小晶粒尺寸微尺度。基于aspreparedfilms实现高功率转换效率的太阳能电池12.1%,到目前为止,最高效率的基础上3NH3PbI3平面异质结结构。这种方法提供了一种简单的方法制备perovskitefilm为电影和高重现性的方式装置。潜在的动力学和热力学钙钛矿薄膜生长参数讨论了。
Hybrid organic/inorganic perovskite materials (e.g.,CH3NH3PbI3) are currently among the most competitivecandidates for absorber materials for thin-film photovoltaic (PV)applications.Within the past 4 years, perovskite solar cells havebeen reported to achieve remarkably high efficiency of~15%.The reason for this rapid increase in power conversion efficiency(PCE) of such devices is that perovskite materials possess mostof the properties required to be excellent absorbers: appropriatedirectbandgap, high absorption coefficient, excellent carriertransport, and apparent tolerance of defects.
有机/无机杂化材料(例如,CH3NH3PbI3)目前最有竞争力的薄膜光伏(光伏)吸收材料的候选人应用。在过去的4年中,钙钛矿太阳能电池有据报道,~15%实现非常高的效率。这种快速提高功率转换效率的原因
Besides theirextremely low cost and ease of fabrication, perovskite materialsoffer a wide tunability on composition and structure by adjustingthe metal halide framework and the intercalated organic
species.Pioneering work suggested that these perovskitefilms exhibit composition-/structure-dependent properties, which can beaccessed by various processing approaches.It is essential toachievefine control over the reaction between the inorganic andorganic species, resulting in perovskites with desired propertiesand device performance
除了他们极低的成本和易于制造,钙钛矿材料提供通过调整和结构组成一个广泛的可调性金属卤化物框架与插层有机物种类。开创性的工作建议,这些彼罗夫裙边films展览组成/结构相关特性,可各种处理方法访问。这是必要的 Althoughfirst implemented in dye-sensitized solar cells
basedonmesoporousstructures,theperovskites have been graduallyfound to assume all of the principal roles of PV operation,andPV devices with planar architecture have been demonstrated.Planar architecture potentially provides enhancedflexibility fordevice optimization,
multijunction construction, and investigation of the underlying device physics, but it requires tremendouseffort to fabricate high-quality perovskitefilms. Similar to otherthin-film PV technologies (e.g., α-Si, Cu(InGa)S
andCdTe),vacuum evaporation is one of the most promising techniques to constructperovskitethinfilms for planar junctions. The resulting
perovskites prepared by co-evaporation of two precursors (PbCl2and CH 3NH3I) exhibit satisfactoryfilm coverage and uniformity withinexpectations.However, this technique demands high vacuum, which is too energy consuming and hinders mass
production. Alternatively, solution-based techniques have also been proposed to fabricate thinfilms, in which a mixture of two precursors is used to form the completed absorber. Due to the lack of suitable solvents that can dissolve both components, and the high reaction rate of the perovskite component, this process often results in thinfilms with pinhole formation and incomplete surface coverage, which deteriorates thefilm quality and hampers
thedevice performance.As a variation to this method, a twostep approach was demonstrated to fabricate efficient PV devicesby dipping previously deposited inorganic precursorfilms intosolutions containing organic species.Unfortunately, thismethod has been largely successful infilms with nanostructuredTiO2scaffoldsbut is seldom reported to be applicable forfabricating planar heterojunctions. Constructing a CH3NH3PbI3 film with a thickness of several hundred nanometers requires
long reaction times due to the limited reaction interface area. The two-step process also often results in films with strikingly enhanced surface roughness that frequently peel offfrom the
substrate.As such, there is an urge to develop a facile solution approach to perovskite materials with enhanced controllability of the film quality to construct planar structured devices with
competitiveperformance.In this Communication, we demonstrate use of the vaporassisted solution process (VASP) to fabricate perovskite thin films and subsequently PV devices with planar geometry. Thekey step isfilm growth via in situ reaction of the as-depositedfilmof PbI2 with CH3NH3I vapor (Scheme 1). This method isconceptually different from the current
solution process andvacuum deposition, by avoiding co-deposition of organic and
Received: November 12, 2013 Published: December 20, 2013
althoughfirst实现在染料敏化太阳电池 介孔结构,钙钛矿已逐渐发现光伏发电的主要作用,和具有平面结构的光伏器件已被证明。2B,平面体系结构提供了对潜在enhancedflexibility装置的优化多结结构,和调查潜在的物理装置,但它需要巨大的为了制备出高质量
perovskitefilms。类似于其他薄膜光伏技术(例如,α- Si,Cu(InGa),和CdTe),真空蒸发是最有前途的技术之一构建平面结钙钛矿薄膜。由此产生的 由两个前体共蒸发法制备钙钛矿(PbCl2和甲烷3nh3i)表现出satisfactoryfilm均匀覆盖内在的期望。然而,这种技术要求很高真空,这是太耗费精力和阻碍质量生产。另外,基于解决方案的技术也提出了制备薄膜,其中混合了两
前体是用来形成完整的吸收剂。由于的缺乏合适的溶剂,可以溶解这两个组件,和钙钛矿组分的高反应速率结果往往与针孔形成的和不完整的薄膜表面覆盖,影响薄膜质量和阻碍设备性能。6A作为一个变化的这种方法,一个两步的方法是制备高效光伏设备通过浸渍之前沉积的无机precursorfilms成
含有机物的溶液。2A不幸的是,这方法取得了很大的成功电影中的纳米结构 TiO2支架但很少有报道是适用的制作平面异质结。构建一个通道3NH3PbI3厚度为几百纳米的薄膜反应界面面积有限的反应时间长。这个两步过程也往往导致在电影与惊人提高表面粗糙度,经常从皮衬底。因此,有一个迫切的要求开发一个浅显的解决方案增强可控性的钙钛矿材料方法构建平面结构器件的膜质量
竞争绩效。在这种沟通中,我们展示了使用的vaporassisted求解过程(VASP)制备钙钛矿薄膜薄膜和随后的光伏器件与平面几何。这个关键的一步isfilm增长通过在depositedfilm原位反应碘化铅和CH3NH3我蒸汽(计划1)。这种方法是从概念上不同于当前的解决方案和真空沉积,避免共沉积的有机和 无机物种。它利用的动力学反应性在ch3nh3i和钙钛矿结构的热力学稳定性 原位生长过程和providesfilms良好定义的晶粒晶粒尺寸为微尺度的结构,全表面覆盖,和小的表面粗糙度,适合光伏应用。设备通过实验实现了12.1%的最佳效率的基础onfilms准备,到目前为止最高的效率3NH3
VASP:实验制备的有机/无机杂化perovskitefilm(例如,CH3nh3pbx3,X = Cl,Br,I),其中无机骨架膜是由沉积前体形成的在基板上的溶液,并随后用 所需的有机蒸汽(计划1)。作为一个例子,碘化铅,ch3nh3i有相应的前体对形成CH3NH3PbI3在这项工作(见支持信息(硅)详情)。PBI2薄膜沉积在氟掺杂的锡氧化物(FTO)涂上一层致密的TiO2(穿过玻璃2),在甲烷中退火3nh3i蒸气在150°cinn22小时形成perovskitefilms氛围。图1a显示所制备的相应的X射线衍射(X射线衍射)CH3NH3在FTO / C-TiO PbI3膜2基板。一套强有力的峰在14.08个,28.41个,31.85个,43.19个,分配给(110),(220)、(310)、()及(330)3NH3PbI3晶体,4A,8表明一种卤化物钙钛矿高斜方晶系的晶体结构结晶度。根据文献,2B通常有一个小签名峰为12.65,对应一个低级别的杂质碘化铅。在目前的上述峰值的情况下钙钛矿薄膜显示PBI完全消耗 2通过VASP。这部电影的钙钛矿质量进一步评估扫描电子显微镜和原子力显微镜(原子力显微镜)。如图1b所示,所形成的钙钛矿薄膜具有全表面特征覆盖在
基板上,具有显着的晶粒尺寸微尺度。测定薄膜的表面粗糙度原子力显微镜(图1C),计算为23.2 nm的范围在5μM×5μM.电影备VASP粗糙度相对较小的相比,其他解决方案处理的电影,7无论微尺度晶粒尺寸。典型截面SEM图像显示resultingfilm厚度有~350nm,具有良好定义的晶粒在薄膜厚度。100%表面覆盖度,微尺度晶粒尺寸,均匀晶粒所制备的薄膜的结构表明其前景光伏器件的适用性。这些压倒性的特点可能是由于相结合的相对平滑度预制的碘化铅薄膜,对CH3NH3有效嵌入我蒸汽进入无机框架,将讨论后。膜的形成是制作平面异质结的关键大多数薄膜光伏技术,因此需要了解基本的动力学和热力学机制
钙钛矿薄膜制造用VASP。钙钛矿薄膜进化是由退火~200 nm厚的碘化铅的研究 甲烷存在下的薄膜在150°cinn2 3nh3i气氛不同长度的时间。四具代表性样品 制备了不同的退火时间:初始阶段(0小时,图2b),中期(0.5 h,图2C),完成阶段(2小时,图1b),和后阶段(4小时,图2d)。(扫描电镜图像 1和3 h的样品中包括图S2)的XRD图谱。(图2a)清楚地表明,在初始阶段,这部电影是由PBI2阶段,而在中间阶段,两者阶段,pbi2and钙钛矿,共存于这部电影证明了其对应峰的出现。随着时间的推移进化的pbi2phase消失,在完成阶段,和在后阶段没有新的峰值。相应的depositedfilm晶粒结构 与插层反应,以及惊人的变化以及。最初的碘化铅薄膜表现出均匀的多边形晶粒数百纳米,以及相邻的分散的空隙谷物。作为pbi2film暴露于CH3nh3i蒸气30最小,它表现出不同的形状与不同的对比度。这个黑暗的颗粒形态类似于那些在图2b,被认为是未反应的PBI2。相对较轻的谷物出现了对原有的PBI的顶部2膜较大晶粒尺寸和晶粒形貌。作为共存电影中的两阶段是由X射线衍射证实,他们是推测新形成的钙钛矿。这些物种PBI的顶部薄膜显著促进膜增厚,为 图1B所示,可能是由于体积膨胀甲烷插层3nh3i,伴随着转型的on the FTO/c-TiO 2 substrate, obtained byreacting PbI2 film and CH3NH3I vapor at 150 °C for 2 h in N2atmosphere: (a) XRD pattern; (b) top-view SEM image (inset imagewith higher resolution, scale bar 1μm); (c) tapping-mode AFM height images (5 ×5μm) (inset: the corresponding 3D topographic image); and (d) cross-sectional SEM image.图1。在FTO / C-TiOperovskitefilm 2基板,通过反应型2电影和电影3nh3i蒸气在150°C 2 H N2氛围:(一)XRD图;(b)俯视SEM图像(插入图像具有更高的分辨率,刻度尺1μm);(c++)叩模式图片(5×5μm)(插图:相应的三维地形图像);和(三维)截面扫描电镜图像。
碘化铅框架从原来的边缘共享八面体钙钛矿结构中的角点共八面体结构 电影8A注意外观的一些点的大小为数对未反应的PbI2表面纳米。它是高度 怀疑这些微小的点是反应性的“核”的增长谷物,源自之间PbI2和反应
ch3nh3i蒸气。随着新形成的存在顶部的钙钛矿晶体,以及“核”饰左右,我们认为,插层反应发生在顶部的PBI在这个阶段,研究2电影。随着反应时间的增加2小时,与晶粒尺寸达微型perovskitefilms是观察。相比原来的pbi2film,perovskitefilm在形态和大小不等,其中薄膜厚度钙钛矿型增加到350 nm~从原来的pbi2film~200 nm(图1A)。钙钛矿的面内晶粒尺寸为3次薄膜厚度,表明钙钛矿的生长polycrystallinefilms遵循正常晶粒生长模式。9在
此外,在相邻的晶体中存在的空隙原pbi2film消失后钙钛矿晶体形成。有趣的是,进一步延长反应时间为4小时不影响颗粒结构(图2)。没有明显的
共分享92篇相关文档