当前位置:首页 > 我的毕业论文完整终极版5.15 - 图文
结论:
(1)通过对整体式催化剂进行SEM表征,比较图4-2、4-3、4-4与图4-1的不同可以清楚的证明已经通过涂覆的方法将分子筛成功的粘结在载体堇青石上,也可以清晰的看到在堇青石的表面涂覆上的厚厚分子筛。
(2)通过比较图4-2和4-3的分子筛涂覆情况,可以看出当胶量为10%时涂覆的分子筛不如5%的胶量时所涂覆的均匀,而是分散于孔道中,其十分容易造成孔道的堵塞。
(3)通过比较图4-2和4-4,一步法比两步法的分子筛涂覆要更加致密,效果更好。
35
第6章 结论
本文首先基于Beta、MCM-49、ZSM-5、FER、MOR等五种不同构型沸石分子筛,应用液相离子交换法对其进行改性,制备出了Fe、Co两种金属离子改性的沸石分子筛。接着以堇青石为载体,通过一步涂覆法和两步涂覆法制备了一系列应用于N2O直接催化分解的整体式沸石分子筛催化剂,同时以实验评价和SEM表征技术相结合的方式,系统开展了制备方法和工艺条件等对N2O直接催化分解的影响研究。最后得出以下结论:
(1)两步涂覆法中Fe、Co改性的Beta、MCM-49、ZSM-5、FER、MOR分子筛中,对于N2O直接分解催化活性最高的为Co-Beta,Fe-Beta次之。
(2)相同金属离子改性的不同构型整体式沸石分子筛对N2O直接分解存在较大的活性差异,其中Beta分子筛具有明显优势,表明了分子筛的构型对N2O催化分解会产生巨大的影响。
(3)一步涂覆法中对于Fe-Beta的整体式催化剂的制备宜选用铝溶胶作为粘结剂,上胶量为5%;而对于Co-Beta的整体式催化剂的制备宜选用硅溶胶作为粘结剂,上胶量同样为5%。
(4)整体式催化剂的制备过程中的粘结剂的选用和分子筛的构型有关,且粘结剂的量应适宜,过多或过少都不好。
(5)通过SEM表征可以看到应用一步法制备的整体式催化剂要比两步法制备的在分子筛的涂覆上要更加致密,效果更好。
(6)最后在经过SEM表征、活性评价、经济效益、制备难易程度综合分析后得出一步涂覆法整体上要优于两步涂覆法。
36
参考文献
[1] [2] [3] [4] [5] [6] [7] [8] [9]
张朝晖, 吕锡武, 齐玉平. N2O大气污染演变及源汇分布[J]. 电力环境保护, 2005, 2(1):24-26.
石明岩, 吕锡武, 稻森悠平. N2O的环境效应及其防治技术的发展趋势[J]. 城市环境和城市生态, 2002, 15(5): 45-47.
高素华, 潘亚茹. 温室效应对气候和农业的影响[J]. 环境科学, 1991, 12(2):
73-76.
辛洪川, 刘长厚, 张守臣等. 负载型La(2-x)SrxCuO4催化分解N2O的研究[J].化学通报, 2004, 11(2): 848-853.
孙娜, 杨丰科, 刘均洪. 降低N2O排放的己二酸尾气处理技术[J]. 工业催化, 2003, 11(6): 11.
Winter E R S. The decomposition of nitrous oxide on the rare-earth sesquioxides and related oxides [J]. J. Catal., 1969, 15: 144-152.
Winter E R S. The decomposition of nitrous oxide on metallic oxides PartⅡ[J]. J.Catal., 1970, 19: 32-40.
Winter E R S. The decomposition of N2O on oxide catalysts: Ⅲ. The effect of O2[J]. J. Catal., 1974, 34: 431-439.
Tan S A, Grand B, Lambert M. The silver-catalysed decomposition of N2O and the catalytic oxidation of ethylene by N2O over Ag(111) and Ag/α-Al2O3[J]. J. Catal., 1987, 104: 156-163.
Sivaraj C, Reddy B M, Rao P K. Selective enhancement of surface Cu+ species in CuO/ZnO/Al2O3 catalyst by nitrous oxide decomposition[J]. J. Mole. Catal., 1988,47:17-20.
Yamashita T, Vannice A. N2O decomposition over manganese oxides[J]. J. Catal., 1996, 161: 254-262.
Zemva P, Lesar A, Kobal I, et al. Interpretation of kinetic isotope effects in the decomposition of N2O over CoO[J]. Chem. Phys., 2001, 264: 413-418.
Ohnishi C, Asano K, Iwanoto S, et al. Preparation of Co3O4 catalysts for direct decomposition of nitrous oxide under industrial conditions[J]. Stud. Surf. And Catal., 2006,162: 737-744.
Christopher J, Swamy C S. Studies on the catalytic decomposition of N2O on LnSrFeO4 (Ln=La,Pr, Nd, Sm and Gd)[J]. J. Mole. Catal., 1991, 68: 199-213.
Belapurkar D, Gupta N M, Phatak G M, et al. Role of oxygen vacancies in the decomposition of N2O over YBa2CuO7-Ъ and Gd2CuO4 oxide systems[J]. J. Mole. Catal., 1994, 87: 287-295.
Morterra C, Giamello E, Cerrato G, et al. Role of surface hydration state on the naturereactivity of Copper ions in Cu-ZrO2 catalysts: N2O decomposition[J]. J. Catal., 1998, 179: 111-12.
Gao L A, Au C T. Studies on the decomposition of N2O over Nd2CuO4, Nd1.6Ba0.4CuO4 and Nd1.8Ce0.2CuO4[J]. J. Mole. Catal. A: Chemical., 2001, 168: 173-186.
[10]
[11] [12] [13]
[14] [15]
[16]
[17]
[18] Perez-Alonso F J, Melián C I, Granados M L, et al. Synergy of FexCe1-xO2 for
N2O decomposition[J]. J. Catal. 2006, 239: 340-346.
[19] Aman L E B, Lecknerand S A. one-pot reactions: a contribution to environmental
protection[J]. Energy Fuel., 1991, 5: 815.
[20] 吴波, 庄亚辉. N2O直接分解催化剂的研究进展[J]. 环境科学进展. 1997, 10,
5(5):1-7.
[21] Aparicio L M, Ulla M A, Millman W S, Dumesic J A. Catalytic reduction of N2O
by various hydrocarbons over Fe-ZSM-5: nature and reactivity of carbonaceous deposits [J]. J. Catal., 1988, 1(10):331. [22] Hadjiivanov K, Kn?zinger H, Tsyntsarski B, Dimitrov L. Effect of water on the
reduction of NOx with propane on Fe-ZSM-5. An FTIR mechanistic study[J]. Catal. Lett., 1999, 62: 35-40.
[23] Shimoka W M, Hirano K, Takezawa N. Temperature programmed desorption study
of adsorbed species formed by the decomposition of N2O on ion-exchanged zeolite catalysts[J]. Catal. Toda., 1998, 45: 117-122.
[24] Ramanujachary K V, Vijayakumar K M, Swamy C S, Bangladesh J. Chemistry of
surface oxygen formed from N2O on ZSM-5 at moderate temperatures [J]. Acad. Science., 1981, 49: 25.
[25] Turek T. A Transient kinetic study of the oscillating N2O decomposition over
Cu-ZSM-5[J]. J. Catal., 1998,174: 98-108.
[26] Ciambelli P, Benedetto A D, Garufi E, et al. Spontaneous isothermal oscillations in
N2O decomposition over a Cu-ZSM-5 catalyst[J]. J. Catal., 1998, 175: 161-169. [27] Panov G I, Sobolev V I, Kharitonov A S. The role of iron in N2O decomposition
on ZSM-5 zeolite and reactivity of the surface oxygen formed[J]. J. Mole. Catal., 1990, 61:85-97.
[28] DiRenzo F,Albizane A,Nieolle M.Betastability of Zeolites in Tetraethyl-a
Mmonium Media[J].Stud Surf Sci Catal,1991,65:603-612
[29] 祁晓岚, 刘希尧. β沸石合成与表征的研究进展[J]. 分子催化. 1999, 12,
13(6):471-482
[30] Cybulski A,Moulijn J A.Structure Catalysts and Reactors.New York:Marcel
Dekker,l998,l5~284
[31] 戴特林J C,罗辛斯基V,万宗荣.整体催化剂及制备方法.中国.CN l4儿
394A.2003
[32] Groppi G,Tronconi E.Simulation of Structure Catalytic Reactor with Enhanced
Thermal Conductivity for Selective Oxidation Reaction.Catalysis Today.2001,69(1):63~73
[33] Crezee E,Barendregt A,Kapteijn F,et a1.Carbon Coated Monolithic Catalysts
in Selective 0xidation of Cycl0hexan0ne.Catalysis Today,2001,69(3):283~ 290 [34] Schneider R。Kiessling D,W endt G.Cordierite Monolithic Supported Perovskite
—Type—Catalysts for the Total Oxidation of Chlorinated Hydrocarbons.Applied Catalysis B,2000.28(3):l87~ l95
[35] 华金铭,郑起,林性贻等.整体式高温水煤气变换催化剂的初步研制.工业催
化,2003,11(3):l6~20 Hua Jinming.Zhengqi,Lin Xingyi,et a1.Development of Monolithic Catalysts for High-Temperature W ater—Gas Shift
共分享92篇相关文档