当前位置:首页 > 2019年湖北省(江汉油田、潜江、天门、仙桃)市中考数学试题(含答案解析)
检验:当x=时,(x+1)(x﹣1)=≠0, ∴原分式方程的解为x=.
【点评】本题主要考查二次根式的混合运算与解分式方程,解题的关键是熟练掌握二次根式的乘法法则及解分式方程的步骤.
18.(6分)请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.
(1)如图①,四边形ABCD中,AB=AD,∠B=∠D,画出四边形ABCD的对称轴m; (2)如图②,四边形ABCD中,AD∥BC,∠A=∠D,画出BC边的垂直平分线n.
【分析】(1)连接AC,AC所在直线即为对称轴m.
(2)延长BA,CD交于一点,连接AC,BC交于一点,连接两点获得垂直平分线n. 【解答】解:(1)如图①,直线m即为所求 (2)如图②,直线n即为所求
【点评】本题考查了轴对称作图,根据全等关系可以确定点与点的对称关系,从而确定对称轴所在,即可画出直线.
19.(7分)为了解某地七年级学生身高情况,随机抽取部分学生,测得他们的身高(单位:cm),并绘制了如下两幅不完整的统计图,请结合图中提供的信息,解答下列问题. (1)填空:样本容量为 100 ,a= 30 ;
17
(2)把频数分布直方图补充完整;
(3)若从该地随机抽取1名学生,估计这名学生身高低于160cm的概率.
【分析】(1)用A组的频数除以它所占的百分比得到样本容量,然后计算B组所占的百分比得到a的值;
(2)利用B组的频数为30补全频数分布直方图;
(3)计算出样本中身高低于160cm的频率,然后利用样本估计总体和利用频率估计概率求解.
【解答】解:(1)15÷所以样本容量为100;
B组的人数为100﹣15﹣35﹣15﹣5=30, 所以a%=
×100%=30%,则a=30;
=100,
故答案为100,30;
(2)补全频数分布直方图为:
18
(3)样本中身高低于160cm的人数为15+30=45, 样本中身高低于160cm的频率为
=0.45,
所以估计从该地随机抽取1名学生,估计这名学生身高低于160cm的概率为0.45. 【点评】本题考查了利用频率估计概率:用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.也考查了统计中的有关概念.
20.(8分)某农贸公司销售一批玉米种子,若一次购买不超过5千克,则种子价格为20元/千克,若一次购买超过5千克,则超过5千克部分的种子价格打8折.设一次购买量为x千克,付款金额为y元. (1)求y关于x的函数解析式;
(2)某农户一次购买玉米种子30千克,需付款多少元?
【分析】(1)根据题意,得①当0≤x≤5时,y=20x;②当x>5,y=20×0.8(x﹣5)+20×5=16x+20;
(2)把x=30代入y=16x+20,即可求解; 【解答】解:(1)根据题意,得 ①当0≤x≤5时,y=20x;
②当x>5,y=20×0.8(x﹣5)+20×5=16x+20; (2)把x=30代入y=16x+20, ∴y=16×30+20=500;
∴一次购买玉米种子30千克,需付款500元;
【点评】本题考查一次函数的应用;能够根据题意准确列出关系式,利用代入法求函数
19
值是解题的关键.
21.(8分)如图,E,F分别是正方形ABCD的边CB,DC延长线上的点,且BE=CF,过点E作EG∥BF,交正方形外角的平分线CG于点G,连接GF.求证: (1)AE⊥BF;
(2)四边形BEGF是平行四边形.
【分析】(1)由SAS证明△ABE≌△BCF得出AE=BF,∠BAE=∠CBF,由平行线的性质得出∠CBF=∠CEG,证出AE⊥EG,即可得出结论;
(2)延长AB至点P,使BP=BE,连接EP,则AP=CE,∠EBP=90°,证明△APE≌△ECG得出AE=EG,证出EG=BF,即可得出结论. 【解答】证明:(1)∵四边形ABCD是正方形, ∴AB=BC,∠ABC=∠BCD=90°, ∴∠ABE=∠BCF=90°, 在△ABE和△BCF中,∴△ABE≌△BCF(SAS), ∴AE=BF,∠BAE=∠CBF, ∵EG∥BF, ∴∠CBF=∠CEG, ∵∠BAE+∠BEA=90°, ∴∠CEG+∠BEA=90°, ∴AE⊥EG, ∴AE⊥BF;
(2)延长AB至点P,使BP=BE,连接EP,如图所示: 则AP=CE,∠EBP=90°,
,
20
共分享92篇相关文档