当前位置:首页 > 高等数学-七-多元函数微分学 - 图文
五、二元函数偏增量与全增量
设函数z=f(x,y)在点P(x,y)的邻域内有定义.
增量
?xz?f(x??x,y)?f(x,y)?yz?f(x,y??y)?f(x,y)分别称为函数z=f(x,y)在点(x,y)处关于x和关于y的偏增量;而增量
y(x,y??y)(x??x,y??y)(x??x,y)(x,y)?z?f(x??x,y??y)?f(x,y)称为函数z=f(x,y)在点(x,y)
Ox处的全增量。
§2、偏导数偏导数概念
显函数偏导数的计算
一元函数导数定义式定义1设函数z=f(x,y)在点P0(x0,y0)的某邻域内有定义。如果极限?zf(x??x,y)?f(x,y)0000?lim?x?xx?x?0?xy?y00一、偏导数存在(有限值),则称函数z=f(x,y)在点P0(x0,y0)处关于x可导,并称其极限值为函数z=f(x,y)在点P0(x0,y0)处关于x的偏导数,记为?z?f,fx?(x0,y0),z?.xx?x0,y?y0?xx?x0?x0?xxy?yy?y00同理,函数z=f(x,y)在点P0(x0,y0)处关于y的偏导数
f(x0,y0??y)?f(x0,y0)?z?lim?yx?x0?y?0?yy?y01、当fx(x0,y0),fy(x0,y0)均存在时,称函数z=f(x,y)
在点(x0,y0)处可导;
2、如果z=f(x,y)在区域D内每一点处均可导,则称函数z=f(x,y)在区域D内可导;此时,存在偏导函数,记为
?z?f,fx(x,y),zx,?x?x?z?f,fy(x,y),zy,?y?y
共分享92篇相关文档