当前位置:首页 > 苏科版初三数学2019中考复习二轮专题《动态问题2》
(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿BA向点A匀速移动.当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动.DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<4.5).解答下列问题:
(1)当t为何值时,点A在线段PQ的垂直平分线上?
(2)连接PE,设四边形APEC的面积为y(cm),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由.
(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由.(图(3)供做题时使用)
2
12.如图,正方形ABCD与矩形EFGH在直线l的同侧,边AD、EH在直线l上.保持正方形ABCD不动,并将矩形EFGH以1cm/s的速度沿DA方向移动,移动开始前点E与点D重合,当矩形EFGH完全穿过正方形ABCD(即点H与A点重合)时停止移动,设移动时间为t(s).已知AD=5cm,EH=4cm,EF=3cm,连接AF、CG.
(1)矩形EFGH从开始移动到完全穿过正方形ABCD,所用时间为 s; (2)当AF⊥CG时,求t的值;
(3)在矩形EFGH移动的过程中,AF+CG是否存在最小值?若存在,直接写出这个最小值及相应的t的值;若不存在,说明理由.
13.如图,四边形OABC的顶点A、C分别在x、y轴的正半抽上,点D是OA上的一点,OC=OD=4,OA=6,点B的坐标为(4,4).动点E从点C出发,以每秒个单位长度的速度沿线段CD向点D运动,过点E作BC的垂线EF交线段BC于点F,以线段EF为斜边向右作等腰直角△EFG.设点E的运动时间为t秒(0≤t≤4).
(1)点G的坐标为( , )(用含t的代数式表示)
(2)连接OE、BG,当t为何值时,以O、C、E为顶点的三角形与△BFG相似?
(3)设点E从点C出发时,点E、F、G都与点C重合,点E在运动过程中,当△ABG的面积为时,求点E运动的时间t的值,并直接写出点G从出发到此时所经过的路径长 (即线段CG的长).
14.如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH. (1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”) (2)线段AC,AG,AH什么关系?请说明理由; (3)设AE=m,
①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值. ②请直接写出使△CGH是等腰三角形的m值.
15.如图1所示,正方形ABCD的边长为2,点E、F分别为边AB、AD的中点.如图2所示,将△AEF绕点A逆时针旋转α(0°<α≤90°),射线BE、DF相交于点P.
(1)求证:△ABE≌△ADF;
(2)如图2,在△AEF旋转的过程中,若射线BE恰好通过AD的中点H,求PF的长;
(3)如图3,若将△AEF从图1的位置旋转至AE⊥BE,试求点P在旋转过程中的运动路线长.
16.在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,OA在x轴的负半轴上,OC在y轴的正半轴上.
(Ⅰ)若OA=2,AB=1.
①如图1,将矩形OABC绕点O顺时针方向旋转α(0°<α<90°)得到矩形(OA1B1C1),当点A的对应点A1落在BC边上时,求点A1的坐标;
②如图,将矩形OABC绕点O顺时针方向旋转β(0°<β<90°)得到矩形OA2B2C2,当点B的对应点B2落在轴的正半轴上时,求点A2的坐标;
(Ⅱ)若OA=m,AB=n,如图3,设边OA2与BC交于点E,若
=
﹣1,请直接写出的值.
17.如图,矩形ABCD中,AB=6,BC=6,动点P从点A出发,以每秒个单位长度的速度沿线段AD运动,动点Q从点D出发,以每秒2个单位长度的速度沿折线段D﹣O﹣C运动,已知P、Q同时开始移动,当动点P到达D点时,P、Q同时停止运动.设运动时间为t秒.
(1)当t=1秒时,求动点P、Q之间的距离;
(2)若动点P、Q之间的距离为4个单位长度,求t的值;
(3)若线段PQ的中点为M,在整个运动过程中;直接写出点M运动路径的长度为 .
18.如图,点E,F分别在矩形ABCD的边AB,BC上,连接EF,将△BEF沿直线EF翻折得到△HEF,AB=8,BC=6,AE:EB=3:1.
(1)如图1,当∠BEF=45°时,EH的延长线交DC于点M,求HM的长; (2)如图2,当FH的延长线经过点D时,求tan∠FEH的值; (3)如图3,连接AH,HC,当点F在线段BC上运动时,试探究四边形AHCD的面积是否存在最小值?若存在,求出四边形AHCD的面积的最小值;若不存在,请说明理由.
19.请完成下面的几何探究过程: (1)观察填空
如图1,在R△ABC中,∠C=90°,AC=BC=4,点D为斜边AB上一动点(不与点A,B重合),把线段CD绕点C顺时针旋转90°得到线段CE,连DE,BE,则 ①∠CBE的度数为 ;
②当BE= 时,四边形CDBE为正方形 (2)探究证明
如图2,在Rt△ABC中,∠C=90°,BC=2AC=4,点D为斜边AB上一动点(不与点A,B重合),把线段CD绕点C顺时针旋转90°后并延长为原来的两倍到线段CE,连DE,BE,则: ①在点D的运动过程中,请判断∠CBE与∠A的大小关系,并证明; ②当CD⊥AB时,求证:四边形CDBE为矩形 (3)拓展延伸
如图2,在点D的运动过程中,若△BCD恰好为等腰三角形,请直接写出此时AD的长.
共分享92篇相关文档