当前位置:首页 > 贵州遵义市2018年中考数学试题及解析
【解答】解:将数532亿用科学记数法表示为5.32×1010. 故选:D.
4.(3分)下列运算正确的是( ) A.(﹣a2)3=﹣a5
B.a3?a5=a15 C.(﹣a2b3)2=a4b6 D.3a2﹣2a2=1
【分析】直接利用积的乘方运算法则以及同底数幂的乘除运算法则、合并同类项法则分别计算得出答案.
【解答】解:A、(﹣a2)3=﹣a6,故此选项错误; B、a3?a5=a8,故此选项错误; C、(﹣a2b3)2=a4b6,正确; D、3a2﹣2a2=a2,故此选项错误; 故选:C.
5.(3分)已知a∥b,某学生将一直角三角板放置如图所示,如果∠1=35°,那么∠2的度数为( )
A.35° B.55° C.56° D.65°
【分析】利用两直线平行同位角相等得到一对角相等,再由对顶角相等及直角三角形两锐角互余求出所求角度数即可. 【解答】解:∵a∥b, ∴∠3=∠4, ∵∠3=∠1, ∴∠1=∠4,
∵∠5+∠4=90°,且∠5=∠2, ∴∠1+∠2=90°, ∵∠1=35°, ∴∠2=55°,
故选:B.
6.(3分)贵州省第十届运动会将于2018年8月8日在遵义市奥体中心开幕,某校有2名射击队员在比赛中的平均成绩均为9环,如果教练要从中选1名成绩稳定的队员参加比赛,那么还应考虑这2名队员选拔成绩的( ) A.方差
B.中位数 C.众数
D.最高环数
【分析】根据方差的意义得出即可.
【解答】解:如果教练要从中选1名成绩稳定的队员参加比赛,那么还应考虑这2名队员选拔成绩的方差, 故选:A.
7.(3分)如图,直线y=kx+3经过点(2,0),则关于x的不等式kx+3>0的解集是( )
A.x>2 B.x<2 C.x≥2 D.x≤2
【分析】先根据一次函数图象上点的坐标特征得到2k+3=0,解得k=﹣1.5,然后解不等式﹣1.5x+3>0即可.
【解答】解:∵直线y=kx+3经过点P(2,0) ∴2k+3=0,解得k=﹣1.5, ∴直线解析式为y=﹣1.5x+3, 解不等式﹣1.5x+3>0,得x<2,
即关于x的不等式kx+3>0的解集为x<2,
故选:B.
8.(3分)若要用一个底面直径为10,高为12的实心圆柱体,制作一个底面和高分别与圆柱底面半径和高相同的圆锥,则该圆锥的侧面积为( ) A.60π
B.65π
C.78π
D.120π
【分析】直接得出圆锥的母线长,再利用圆锥侧面及求法得出答案. 【解答】解:由题意可得:圆锥的底面半径为5,母线长为:该圆锥的侧面积为:π×5×13=65π. 故选:B.
9.(3分)已知x1,x2是关于x的方程x2+bx﹣3=0的两根,且满足x1+x2﹣3x1x2=5,那么b的值为( ) A.4
B.﹣4 C.3
D.﹣3
=13,
【分析】直接利用根与系数的关系得出x1+x2=﹣b,x1x2=﹣3,进而求出答案. 【解答】解:∵x1,x2是关于x的方程x2+bx﹣3=0的两根, ∴x1+x2=﹣b, x1x2=﹣3,
则x1+x2﹣3x1x2=5, ﹣b﹣3×(﹣3)=5, 解得:b=4. 故选:A.
10.(3分)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为( )
A.10 B.12 C.16 D.18
【分析】想办法证明S△PEB=S△PFD解答即可. 【解答】解:作PM⊥AD于M,交BC于N.
则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形, ∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN, ∴S△DFP=S△PBE=×2×8=8, ∴S阴=8+8=16, 故选:C.
11.(3分)如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=(x>0)的图象上,则经过点B的反比例函数解析式为( )
A.y=﹣ B.y=﹣ C.y=﹣ D.y= 【分析】直接利用相似三角形的判定与性质得出即可得出答案.
【解答】解:过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D, ∵∠BOA=90°, ∴∠BOC+∠AOD=90°, ∵∠AOD+∠OAD=90°, ∴∠BOC=∠OAD, 又∵∠BCO=∠ADO=90°,
=,进而得出S△AOD=2,
共分享92篇相关文档