当前位置:首页 > 基于matlab的音频信号处理毕业设计(含源文件)
附录 .................................................................... 32
附录1:对相同音频文件的滤波器滤波比较 ............................... 32 附录2:实验中使用的主要M文件代码 ................... 错误!未定义书签。
第1章 引言
本章简要介绍了音频信号处理的研究意义、起源与发展以及国内外的研究现状,并依此提出了本论文研究的主要内容。
MATLAB是一种功能强大、效率高、交互性好的数值计算和可视化计算机高级语言,它将数值分析、信号处理和图形显示有机地融合为一体,形成了一个极其方便、用户界面友好的操作环境。本文就是在MATLAB基础上来进行音频信号参数的分析与处理的。 1.1 音频信号处理的研究意义
本课题旨在对音频文件的调制和滤波。音频信号处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴的学科,是目前发展最为迅速的信息科学研究领域的核心技术之一。通过声音传递信息是人类最重要、最有效、最常用和最方便的交换信息形式。同时,声音也是人与机器之间进行通信的重要工具,它是一种理想的人机通信方式,因而可为信息处理系统建立良好的人机交互环境,进一步推动计算机和其他智能机器的应用,提高社会的信息化程度。
语音信号是基于时间轴上的一维数字信号,在这里主要是对语音信号进行频域上的分析。在信号分析中,频域往往包含了更多的信息。对于频域来说,大概有8种波形可以让我们分析:矩形方波,锯齿波,梯形波,临界阻尼指数脉冲波形,三角波,余旋波,余旋平方波,高斯波。对于各种波形,我们都可以用一种方法来分析,就是傅立叶变换:将时域的波形转化到频域来分析。
语音信号处理是一门新兴的学科,同时又是综合性的多学科领域和涉及面很广的交叉学科。虽然从事这一领域研究的人员主要来自信号与信息处理及计算机应用等学科,但是它与语音学、语言学、声学、认知科学、生理学、心理学等许多学科也有非常密切的联系。
1.2 音频信号处理的发展历程和现状
在60年代,计算机的广泛应用推动了语音识别技术的发展,出现了多种语音信号分析方法,提出了动态规划(DP)和线性预测分析(LP)技术。其中后者较好地解决了语音信号产生模型的问题,对语音识别的发展产生了深远影响。 70年代,语音识别理论取得了突破。LP技术得到进一步发展,动态时间归正技术(DTW)基本成熟,特别是提出了矢量量化(VQ)和隐马尔可夫模型(HMM)理论。在实践上,实现了基于线性预测倒谱和DTW技术的特定人孤立语音识别系统。 80年代,HMM模型和人工神经元网络(ANN)成功应用于实践,并于1988年由CMU研制出了非特定人、大词汇量、连续语音识别系统—SPHINX。它可以理解由1000个单词构成的4200个句子,被认为是语音识别历史上的一个里程碑。HMM模型的广泛应用应归功于AT&T Bell实验室Rabiner等科学家的努力,他们把原本晦涩难懂的HMM纯数学模型工程化,从而为更多研究者了解和认识。ANN和HMM模型建立的语音识别系统,性能相当。 进入90年代,随着多媒体时代的来临,迫
4
切要求语音识别系统从实验室走向实用。许多著名的大公司如IBM、苹果、AT&T和NTT都对语音识别系统的实用化研究投以巨资。
语音识别技术有一个很好的评估机制,那就是识别的准确率,而这项指标在20世纪90年代中后期实验室研究中得到了不断的提高。比较有代表性的系统有:IBM公司推出的Via Voice和Dragon System公司的Naturally Speaking Nuance公司的Nuance Voice Platform语音平台,Microsoft的Whisper Sun的Voice Tone等。语音识别也得到了更多的商用,其中SpeechWorks6是世界领先的电话自动语音识别系统解决方案提供者—SpeechWorks公司的代表产品。利用该产品,用户可以通过电话用自然语言与系统进行交互,进行旅游预约、股票交易、银行服务、订票服务、宾馆服务和寻呼服务等,无需服务人员的介入。目前市场上出现了语音识别电话、语音识别记事本等产品,如美国VPTC公司的VoiceOrganizer和法国的Parrot等。
在我国,语音技术的研究起步较晚,70年代末才开始了语音技术的研究,但在很长一段时间内,都处于缓慢发展的阶段,直到80年代后期,随着计算机应用技术在我国的逐渐普及和数字信号处理技术的进一步发展,国内许多单位纷纷投入到这项研究工作中去,其中有中科院声学所,自动化所,清华大学,四川大学和西北工业大学等科研机构和高等院校,大多数研究者致力于语音识别的基础理论研究工作、模型及算法的研究和改进。但由于起步晚、基础薄弱、计算机水平不发达,导致在整个80年代,我国在语音识别研究方面并没有形成自己的特色,更没有取得显著的成果和开发出大型性能优良的实验系统。 1.3 本课题的研究内容
在本科题中,所要研究的内容首先是语音的录入部分和对录入的音频数据进行频谱的分析并画出其图像。其次是设计滤波器并对加入噪声后的音频文件进行滤波并考察其使用情况以此来检验滤波器的设计是否正确。
本课题研究内容包括:
(1) 对音频信号进行采集:使用MATLAB中的wavread命令对音频文件进行采集。并
使用sound命令对原信号进行播放用于对添加噪声后的信号进行对比。
(2) 图形用户界面GUI的设计:包含设置界面及按钮并对各按钮功能能进行编程。
需要实现按键执行信号播放,加噪声和滤波的功能。 (3) 利用傅里叶变换求信号的频域并作图:使用MATLAB中的傅里叶变换命令对已经
采集到的音频信号做傅里叶变换,变换完成后画出其在频域上的波形并对原时域上的波形进行对比。
(4) 对采样后的信号进行加噪声处理:使用matlab中的相关命令。WGN, AWGN。WGN
用于产生高斯白噪声,AWGN则用于在某一信号中加入高斯白噪声。也可直接用randn函数产生高斯分布序列。
(5) 设计数字滤波器:设计一个数字滤波器时,根据指标先写出模拟滤波器的公式,
再通过一定的变换,将模拟滤波器的公式转换成数字滤波器的公式。
5
1.4 设计流程图
开始工作 对音频信号采集 音频信号的处理 画图观察采集信号的时域波形 添加噪声 对原信号进行傅里叶变换 画图观察变换后信号的频域波形 使用滤波器对信号滤波 使用不同种类的滤波器,观察区别 验证滤波效果
第2章 信号采集基本内容
6
2.1 Matlab简述
MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++,JAVA的支持。可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用,此外许多的MATLAB爱好者都编写了一些经典的程序,用户直接进行下载就可以用。
MATLAB主要可实现功能:
数值分析 数字图像处理 数值和符号计算 数字信号处理 工程与科学绘图 通讯系统设计与仿真 控制系统的设计与仿真 财务与金融工程 本次试验采用的MATLAB版本为2014a版
2.2 采样位数和采样频率
采样位数即采样值或取样值,用来衡量声音波动变化的参数,是指声卡在采集和播放声音文件时所使用数字声音信号的二进制位数。采样频率是指录音设备在一秒钟内对声音信号的采样次数,采样频率越高声音的还原就越真实越自然。
采样位数和采样率对于音频接口来说是最为重要的两个指标,也是选择音频接口的两个重要标准。无论采样频率如何,理论上来说采样的位数决定了音频数据最大的力度范围。每增加一个采样位数相当于力度范围增加了6dB。采样位数越多则捕捉到的信号越精确。对于采样率来说你可以想象它类似于一个照相机,44.1kHz意味着音频流进入计算机时计算机每秒会对其拍照达441000次。显然采样率越高,计算机摄取的图片越多,对于原始音频的还原也越加精确。 2.3 音频信号采集依据:采样定理
对音频信号的采集时必须依据采样定理进行。如此方可避免在采集过程中造成的原信号丢失。
在进行模拟/数字信号的转换过程中,当采样频率fs.max大于信号中最高频率fmax的2倍时(fs.max>2fmax),采样之后的数字信号完整地保留了原始信号中的信息,一般实际应用中保证采样频率为信号最高频率的5~10倍;采样定理又称奈奎斯特定理。
频带为F的连续信号f(t)可用一系列离散的采样值f(t1),f(t1±Δt),f(t1±2Δt),...来表示,只要这些采样点的时间间隔Δt≤1/(2F),便可根据各采样值完全恢复原来的信号f(t)。 这是时域采样定理的一种表述方式。
7
共分享92篇相关文档