当前位置:首页 > 辽宁省大连市2013届高三双基测试数学文试题
23.(本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系xoy中,以原点o为极点,x轴的正半轴为极轴建立极坐标系. 已知射线
?x?t?1,(t为参数),相交于A,B两点. l:??与曲线C:?2y?(t?1),4?(Ⅰ)写出射线l的参数方程和曲线C的直角坐标系方程; (Ⅱ)求线段AB的中点极坐标.
? 24.(本小题满分10分)选修4-5:不等式选讲
已知实数t,若存在t?[,3]使得不等式t?1?2t?5?x?1?x?2 成立,求实数x的取值范围. .
122013年大连市高三双基测试
数学(文科)参考答案与评分标准
说明:
一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.
二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.
三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分. 一.选择题
1.A;2.B;3.C;4.B;5.A;6.B;7.D;8.C;9.B;10.C;11.A;12.D. 二、填空题
x2 13.24?;14.242.8;15.?y2?1;16.3n.
4三.解答题
17.解:(Ⅰ)依题意得sin2A?sin2B=2sinAsinC?sin2C, ··············································· 2分
由正弦定理得:a?b?∴a?c?b?22222······································································· 4分 2ac?c2. ·
2ac.
a2?c2?b22?由余弦定理知:cosB?,∴B?. ·············································· 6分 ?2ac24(Ⅱ)∵sinA?又B?23,∴sinA?,∴A?B. ······························································ 8分
25?4,∴A??4,∴cosA?4, ·············································································· 10分 5∴cosC?cos(3?3?3?2. ······························· 12分 ?A)?coscosA?sinsinA??4441018.解:(Ⅰ)由频率分布表可知,样本容量为n,由
2=0.04,得n=50. ···· 2分 n25y14∴x?··················· 4分 ?0.5,y?50?3?6?25?2?14,z???0.28. ·
50n50(Ⅱ)记样本中视力在(3.9,4.2]的3人为a,b,c,在(5.1,5.4]的2人为d,e. 由题意,从5人中随机抽取两人,所有可能的结果有:?a,b?,?a,c?,?a,d?,?a,e?,?b,c?,
?b,d?,?b,e?,?c,d?,?c,e?,?d,e?,共10种. ·················································· 7分
设事件A表示“两人的视力差的绝对值低于0.5”,则事件A包含的可能的结果有:?a,b?,
?a,c?,?b,c?,?d,e?,共4种. ·················································································· 9分
∴P(A)?422····················· 12分 ?.故两人的视力差的绝对值低于0.5的概率为. ·
105519.解:(Ⅰ)证明:∵四边形ABCD是平行四边形, ?ACB?900,∴?DAC?900.
∵PA?平面ABCD,DA?平面ABCD,∴PA?DA,
又AC?DA,ACIPA?A,
∴DA?平面PAC. ······································································································· 6分 (Ⅱ)设PD的中点为G,在平面PAD内作GH?PA于H,
则GH平行且等于
1······························································································· 8分 AD. ·
2连接FH,则四边形FCGH为平行四边形,
∴GC∥FH,∵FH?平面PAE,CG?平面PAE,
∴CG∥平面PAE,∴G为PD中点时,CG∥平面PAE. ··································· 10分 设S为AD的中点,连结GS,则GS平行且等于∵PA?平面ABCD,∴GS?平面ABCD,
11PA?, 2211. ········································································ 12分 ?VA?CDG?VG?ACD?SVACDGS?31220.解:(Ⅰ)函数
f(x)?lnx?ax2的定义域为(0,??),
1?2ax2?1, ··················································································· 1分 ?f?(x)??2ax?xx2∴①当a?0时,f?(x)?0,所以函数f(x)?lnx?ax的增区间为(0,??), ········ 3分
②当a?0时,若f?(x)?0有0?x?2a2a,若f?(x)?0有x?, 2a2a2a2a2所以函数f(x)?lnx?ax的减区间为(,??),增区间为(0,),
2a2a由①②得当a?0时,函数f(x)的增区间为(0,??),当a?0时,函数f(x)的减区间为
2a2a·················································································· 6分 ,??),增区间为(0,). ·
2a2a?x2?41证明(Ⅱ)当a?时,f?(x)?,
4x8∴x?(0,2)时函数f(x)是增函数,x?(2,??)时函数f(x)是减函数, ······················ 8分
1∴函数f(x)的最大值为f(2)?ln2?,
21?f(1)??,
8在(2,??)取x?e4, (e828?4???28?f(1), ·计算得f(e)?4?·························································· 10分 884(也可以选取其它有效值).
∴f(e)?f(1)?f(2),
?x?(0,2)时函数f(x)是增函数,x?(2,??)时函数f(x)是减函数, ∴存在x0?(2,e4),使f(x0)?f(1),
∴存在x0?(2,??),使f(x0)?f(1). ········································································ 12分
21.解(Ⅰ)设A(x1,4y1),由对称性可得B(?x1,?y1)
x12y12将A(x1,y1)带入椭圆可得2?2?1,
abx12b(1?2)y1?y1y12b2a直线PA和PB斜率乘积············· 2分 ???2??2. ·x1?a?x1?ax12?a2x1?a2a2b21c211由直线PA和PB斜率乘积为?,所以2?,所以2?,
222aa所以椭圆M离心率为
22. ······························································································ 5分 222(Ⅱ)椭圆方程可化为x?2y?a,
?x2?2y2?a2a2k2a222联立?,可得x?,y?, ····································· 7分 221?2k1?2ky?kx?设O为坐标原点,则|OA|?2a(1?k)2|OC|?,同理可得21?2k22a2(1?1)k2. 21?2k1)2a(1?k)2k所以|AC|? ?221?2k1?2k22a2(1?3k4?6k2?3?a?4?a2?22k?5k?22?2311k2?2?2k?42·················································· 10分 a. ·
34a28当且仅当k??1时取等号,所以?,
33x2即a?2,所以椭圆M的方程为··························································· 12分 ?y2?1. ·
221)2a(1?k)2k (另解:所以|AC|??221?2k1?2k22a2(1?3(k2?1)23(k2?1)2422?a??a??a) 22222k?1?k?223(2k?1)(k?2)()2222.解: (Ⅰ) 连结OC,因为OA?OB,CA?CB,则OC?AB. ································· 2分
共分享92篇相关文档