云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > (完整版)统计学第5-6章正态分布、统计量及其抽样分布

(完整版)统计学第5-6章正态分布、统计量及其抽样分布

  • 62 次阅读
  • 3 次下载
  • 2025/6/3 9:02:47

第5-6章 统计量及其抽样分布

5.1正态分布

5.1.1定义:当一个变量受到大量微小的、独立的随机因素影响时,这个变量一般服从正态分布或近似服从正态分布。

概率密度曲线图

例如:某个地区同年龄组儿童的发育特征:身高、体重、肺活量等 某一条件下产品的质量

如果随机变量X的概率密度为

1f(x)?e2???(x??)22?2,???x??

则称X服从正态分布。

2X:N(?,?),读作:随机变量X服从均值为?,方差为?2记做

的正态分布 其中,

??????,是随机变量X的均值,??0是是随机变量X

的标准差

5.1.2正态密度函数f(x)的一些特点:

f(x)?0,即整个概率密度曲线都在x轴的上方。

曲线

f(x)相对于x??对称,并在

x??处达到最大值,

1

f(?)?12??。

?1<?2<?3

曲线的陡缓程度由

?决定:

?越大,曲线越平缓;?越小,曲线越陡峭当

x

趋于无穷时,曲线以

x轴为其渐近线。

标准正态分布 当

??0,??1时,

x2f(x)?1?22?e,

???x??

N(0,1)为标准正态分布。

2

标准正态分布的概率密度函数:

?(x)

标准正态分布的分布函数:

?(x)

任何一个正态分布都可以通过线性变换转化为标准正态分布

X:N(?,?),则Z?X:N(?1,?12)与变量

2X???:N(0,1)

相互独立,则有

变量

2Y:N(?2,?2)X+Y:N(?1+?2,?+?)

5.1.3 正态分布表:可以查的正态分布的概率值

2122?(?x)?1??(x)

例:设(1)(2) (3)

X:N(0,1),求以下概率

P(X?1.5)

P(X?2)

P(?1?X?3)

3

(4)

P(X?2)

P(X?1.5)???(t)dt??(1.5)?0.9332

??1.5解:

(1)(2)

P(X?2)?1?P(X?2)?1??(2)?1?0.9773?0.0227 (3)

P(?1?X?3)?P(X?3)?P(X??1)??(3)??(?1) ??(3)?(1??(1))?0.9987?(1?0.8413)?0.84P(X?2)?P(?2?X?2)??(2)??(?2)(4)

??(2)?(1??(2))?2?(2)?1?0.9545

一般,若

X:N(0,1),则有

P(a?X?b)??(b)??(a)

P(X?a)?2?(a)?1

例 设(1)(2)

X:N(5,3),求以下概率

2P(X?10)

P(2?X?10)

(3)

P(2?X?8)

P(X?5?6)

4

(4)

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

第5-6章 统计量及其抽样分布 5.1正态分布 5.1.1定义:当一个变量受到大量微小的、独立的随机因素影响时,这个变量一般服从正态分布或近似服从正态分布。 概率密度曲线图 例如:某个地区同年龄组儿童的发育特征:身高、体重、肺活量等 某一条件下产品的质量 如果随机变量X的概率密度为 1f(x)?e2???(x??)22?2,???x?? 则称X服从正态分布。 2X:N(?,?),读作:随机变量X服从均值为?,方差为?2记做的正态分布 其中,??????,是随机变量X的均值,??0是是随机变量X的标准差 5.1.2正态密度函数f(x)的一些特点: f(x)?0,即整个

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com