当前位置:首页 > 2020年小升初数学专题复习训练—数与代数:数的认识(4)(知识点总结+同步测试)
常考题型:
例:一个小数,小数点向左移动一位,再扩大1000倍,得365,则原来的小数是3.65. 分析:把365缩小1000倍,即小数点向左移动3位,然后把这个数的小数点再向右移动一位,也就是扩大10倍,就得原数. 解:365÷1000=0.365, 0.365×10=3.65, 故答案为:3.65.
点评:此题主要考查小数点位置移动引起数的大小变化规律:一个数的小数点向右(向左)移动一位、两位、三位…,这个数就比原来扩大(缩小)10倍、100倍、1000倍…,反之也成立. 四.近似数及其求法 【知识点归纳】
近似数:一个数与准确数相近(比准确数略多或者略少些),这一个数称之为近似数.
四舍五入法:如果被舍去部分的首位数字小于5,就舍去这些数字;如果被舍去部分的首位数字是5或大于5,就要在保留部分的末尾数字上加1. 【命题方向】 常考题型:
例1:一个两位小数取近似值后是3.8,这个数最大是3.84,最小是3.75. 分析:(1)两位小数取近似值后是3.8,这个数最大是百分位上的数舍去,舍去的数有:1,2,3,4,其中4是最大的,据此解答; (2)最小是百分位上的数进一,进一的数有:5,6,7,8,9,其中5是最小的,因为进一,保留后十分位是8,那么原来十分位是8-1=7,据此解答.
解:(1)这个数最大是百分位上的数舍去,舍去的数有:1,2,3,4,其中4是最大的,所以这个数是3.84;
(2)这个数最小是百分位上的数进一,进一的数有:5,6,7,8,9,其中5是最小的,所以这个数是3.75; 故答案为:3.84,3.75.
点评:本题主要考查近似数的求法,注意最大是百分位上的数舍去,最小是百分位上的数进一.
例2:9.0968精确到十分位约是9.1,保留两位小数约是9.10,保留整数约是9.
分析:9.0968精确到十分位,就要看百分位上的数是否满5;保留两位小数,就是精确到百分位,就要看千分位上的数是否满5;保留整数,就是精确到个位,就要看十分位上的数是否满5;再运用“四舍五入”法求得近似值即可. 解:9.0968≈9.1; 9.0968≈9.10; 9.0968≈9.
故答案为:9.1,9.10,9.
点评:此题考查运用“四舍五入”法求一个数的近似值,要看清精确到哪一位,就根据它的下一位上的数是否满5,再进行四舍五入. 五.小数大小的比较 【知识点归纳】
小数大小的比较方法与整数基本相同,即从高位起,依次把相同数位上的数加以比较.因此,比较两个小数的大小,先看它们的整数部分,整数部分大的那个数大;如果整数部分相同,十分位上的数大的那个数大;如果十分位上的数也相同,百分位上的数大的那个数大. 【命题方向】 常考题型:
例1:整数都比小数大.×(判断对错). 分析:因为小数包括整数部分和小数部分,所以本题可以举整数部分不为0的反例去判断.
解:比如:整数2比小数3.9小,这与题干的说法相矛盾, 所以,“整数都比小数大”这个判断的是错误的; 故答案为:×.
点评:比较整数和小数的大小时,要先比较整数部分的位数,它们的数位如果不同,那么数位多的那个数就大,如果数位相同,相同数位上的数大的那个数就大;如果整数部分相同,然后再比较小数部分的十分位、百分位、千分位… 1例2:在0.3,0.33,0.0.3,34%,3这五个数中,最大的数是1?小的数是0.3,相等的数是0.3和 3 . ?34%,最分析:有几个不同形式的数比较大小,一般情况下,都化为小数进行比较得出答案. 解:34%=0.34, 1?=, 30.3因为0.34>0.3=0.3>0.33>0.3, 1所以34%>0.3=3>0.33>0.3, 1?所以在0.3,0.33,0.3,34%,3这五个数中,最大的数是1?数是0.3,相等的数是0.3和3. 1?故答案为:34%,0.3,0.3,3. ???34%,最小的点评:解决有关小数、百分数、分数之间的大小比较,一般都把分数、百分数化为小数再进行比较,从而解决问题. 六.小数与分数的互化 【知识点归纳】
(1)小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分
(2)分数化成小数:用分子去除分母,能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位数
(3)一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数
(4)小数化成百分数:把小数点向右移动两位,同时,在后面添上百分号
共分享92篇相关文档