当前位置:首页 > 初三数学相似三角形典型例题(含答案)
初三数学相似三角形
(一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是:
1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。
2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。 3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。 4. 能熟练运用相似三角形的有关概念解决实际问题
本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。 本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。 相似三角形是平面几何的主要内容之一,在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。
(二)重要知识点介绍: 1. 比例线段的有关概念: 在比例式ac?(a:b?c:d)中,a、d叫外项,b、c叫内项,a、c叫前项, bdb、d叫后项,d叫第四比例项,如果b=c,那么b叫做a、d的比例中项。
2
把线段AB分成两条线段AC和BC,使AC=AB·BC,叫做把线段AB黄金分割,C叫做线段AB的黄金分割点。
2. 比例性质: ①基本性质:ac??ad?bc bd ②合比性质:aca±bc±d??? bdbdacma?c?…?ma??…?(b?d?…?n≠0)?? bdnb?d?…?nb ③等比性质:
3. 平行线分线段成比例定理:
①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l1∥l2∥l3。
则ABDEABDEBCEF?,?,?,… BCEFACDFACDF ②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
4. 相似三角形的判定:
①两角对应相等,两个三角形相似
②两边对应成比例且夹角相等,两三角形相似 ③三边对应成比例,两三角形相似
④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角形相似
⑤平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
⑥直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
5. 相似三角形的性质
①相似三角形的对应角相等 ②相似三角形的对应边成比例
③相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比 ④相似三角形周长的比等于相似比
⑤相似三角形面积的比等于相似比的平方
【典型例题】
例1. (1)在比例尺是1:8000000的《中国行政区》地图上,量得A、B两城市的距离是7.5厘米,那么A、B两城市的实际距离是__________千米。
(2)小芳的身高是1.6m,在某一时刻,她的影子长2m,此刻测得某建筑物的影长是18米,则此建筑物的高是_________米。
解:这是两道与比例有关的题目,都比较简单。 (1)应填600 (2)应填14.4。
例2. 如图,已知DE∥BC,EF∥AB,则下列比例式错误的是:____________
ADAE?ABACDEAD? C.BCBD A.B.CEEA? CFFBEFCFD.?
ABCBDEAD?, BCBD 分析:由DE∥BC,EF∥AB可知,A、B、D都正确。而不能得到故应选C。利用平行线分线段成比例定理及推论求解时,一定要分清谁是截线、谁是被截
线,C中DE很显然是两平行线段的比,因此应是利用三角相似后对应边成比 BCDEADAE例这一性质来写结论,即??
BCABAC
例3. 如图,在等边△ABC中,P为BC上一点,D为AC上一点,且∠APD=60°,
BP?1,CD?2,求△ABC的边长 3
解:∵△ABC是等边三角形 ∴∠C=∠B=60°
又∵∠PDC=∠1+∠APD=∠1+60° ∠APB=∠1+∠C=∠1+60° ∴∠PDC=∠APB ∴△PDC∽△APB ∴PCCD? ABPB 设PC=x,则AB=BC=1+x
2x ∴?3,∴x?2,
1?x1 ∴AB=1+x=3。
∴△ABC的边长为3。
例4. 如图:四边形ABEG、GEFH、HFCD都是边长为a的正方形,
(1)求证:△AEF∽△CEA (2)求证:∠AFB+∠ACB=45°
分析:因为△AEF、△CEA有公共角∠AEF 故要证明△AEF∽△CEA
只需证明两个三角形中,夹∠AEF、∠CEA的两边对应成比例即可。 证明:(1)∵四边形ABEG、GEFH、HFCD是正方形 ∴AB=BE=EF=FC=a,∠ABE=90° ∴AE?2a,EC?2a
∴ ∴AE2aEC2a??2,??2 EFaAE2aAEEC? EFAE 又∵∠CEA=∠AEF
∴△CEA∽△AEF
(2)∵△AEF∽△CEA ∴∠AFE=∠EAC
∵四边形ABEG是正方形 ∴AD∥BC,AG=GE,AG⊥GE ∴∠ACB=∠CAD,∠EAG=45°
∴∠AFB+∠ACB=∠EAC+∠CAD=∠EAG ∴∠AFB+∠ACB=45°
例5. 已知:如图,梯形ABCD中,AD∥BC,AC、BD交于点O,EF经过点O且和两底平行,交AB于E,交CD于F
求证:OE=OF
证明:∵AD∥EF∥BC
OEAEOEEB?,? BCABADABOEOEAEEBAB?????1 ∴BCADABABAB111?? ∴ BCADOE111?? 同理: BCADOF11? ∴∴OE=OF OEOF
∴
从本例的证明过程中,我们还可以得到以下重要的结论:
111?? ADBCOE1 ②AD∥EF∥BC?OE?OF?EF
211111212??即?? ③AD∥EF∥BC? ? ?1ADBCOEADBCEFOFEF2 ①AD∥EF∥BC?
共分享92篇相关文档