云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 2020高中数学 第一章 不等关系与基本不等式 1.1 不等式的性质活页作业1 北师大版选修4-5

2020高中数学 第一章 不等关系与基本不等式 1.1 不等式的性质活页作业1 北师大版选修4-5

  • 62 次阅读
  • 3 次下载
  • 2025/6/14 14:07:33

2020

活页作业(一) 不等式的性质

一、选择题

1.若2-m与|m|-3异号,则实数m的取值范围是( ) A.(3,+∞) C.(2,3)

B.(-3,3)

D.(-3,2)∪(3,+∞)

解析:法一 因为2-m与|m|-3异号,所以(2-m)·(|m|- 3)<0,即(m-2)(|m|-3)>0.

??m≥0,所以?

?m-2?

m-3>0

??m<0,

或?

?m-2?

-m-3>0.

解得

m>3或0≤m<2或-3<m<0.

法二 取m=4符合题意,排除B,C两项;取m=0可排除A项. 答案:D

2.给出下列命题:

11

①若a>b且a,b同号,则<;

ab1

②若>1,则0<a<1;

a③a≥b且ac≥bc?c≥0; ④若a>b,n∈N+?a2n-1

>b2n-1

.

其中真命题个数为( ) A.1 C.3

B.2 D.4

解析:①正确.因为ab>0,a>b,所以>,即 11>.

abababba②显然成立.

③错误.因为ac≥bc,即(a-b)c≥0, 而a≥b,当a=b时,c∈R.

④正确.因为n∈N+,2n-1为奇数,条件可放宽, 即a>b,则得a答案:C

3.设a>b>1,c<0,给出下列三个结论: ①>;②a<b;③logb(a-c)>loga(b-c).

2n-1

>b2n-1

.

ccabcc 2020

其中,正确结论的序号是( ) A.① C.②③

B.①② D.①②③

11cc解析:由a>b>1,c<0,得<,>.

ababc由幂函数y=x(c<0)是减函数,得a<b. 因为a-c>b-c,

所以logb(a-c)>loga(a-c)>loga(b-c). 故①②③均正确. 答案:D

4.若a<0,-1<b<0,则有( ) A.a>ab>ab C.ab>a>ab

解析:∵a<0,-1<b<0,

∴ab>0,b-1<0,1-b>0,0<b<1. ∴1-b>0,ab-a=a(b-1)>0.∴ab>a. ∵ab-ab=ab(1-b)>0,∴ab>ab. ∵a-ab=a(1-b)<0,∴a<ab. 故ab>ab>a. 答案:D 二、填空题

5.把下列各题中的“=”全部改成“<”,结论仍然成立的是________. ①如果a=b,c=d,那么a-c=b-d; ②如果a=b,c=d,那么ac=bd; ③如果a=b,c=d,且cd≠0,那么=; ④如果a=b,那么a=b.

解析:因为幂函数y=x在R上是增加的,所以④成立. 答案:④

6.lg(x+1)与lg x(x>0)的大小关系是________.

2

33

3

22

2

2

2

2

2

2

22

ccB.ab>ab>a D.ab>ab>a

2

2

abcdx2+1?1?解析:lg(x+1)-lg x=lg=lg?x+?. x?x?

2

1

∵x>0,∴x+≥2>1.

x?1?2

∴lg?x+?>0,即lg(x+1)>lg x.

?

x?

答案:lg(x+1)>lg x

2

2020

三、解答题

11

7.已知a,b,x,y都是正数,且>,x>y.

ab求证:

xx+ay+b>

y.

11

证明:因为a,b,x,y都是正数,且>,x>y,

ab所以>.所以<. 故+1<+1,即0<所以

xyababxyaxbyx+ay+b<. xyxx+ay+b>

y.

8.建筑学规定,民用住宅的窗户面积必须小于地板面积,但按采光标准,窗户面积与地板面积的比值不小于10%,并且这个比值越大,住宅的采光条件越好.若同时增加相等的窗户面积和地板面积,住宅的采光条件是变好了还是变差了?

1n解:设窗户面积为n,地板面积为m,则≤<1.

10m设增加的窗户面积和地板面积均为t, 由<1.得m>n. ∴mt>nt.

∴mt+mn>nt+mn,即m(n+t)>n(m+t). ∴

nmn+tn>,即采光条件变好了. m+tm

一、选择题

1.若a>b>0,则下列不等式恒成立的是( ) 2a+baA.> a+2bb11C.a+>b+ b2+1b2B.2>2 a+1aD.a>b

abab2a+b5a解析:选取适当的特殊值,若a=2,b=1,可知=,=2.由此可知选项A不成立.由不等式的基本

a+2b4b1111ab性质,可知当a>b>0时,<.由此可知选项C不恒成立.取a=,b=,则a>b>0,但a=b.故选项D

ab24不恒成立.

答案:B

2.已知x>y>z,x+y+z=0,则下列不等式成立的是( )

2020

A.xy>yz C.xy>xz

B.xz>yz D.x|y|>z|y|

??x>0,

解析:因为x>y>z,x+y+z=0,所以3x>x+y+z=0,3z<x+y+z=0.所以x>0,z<0.由?

?y>z,?

可得xy>xz.

答案:C 二、填空题

π

3.若0<x<,则2x与3sin x的大小关系是否确定?________(选填“是”或“否”).

2解析:令f(x)=2x-3sin x,则f′(x)=2-3cos x.

222π

当cos x<时,f′(x)>0;当cos x=时,f′(x)=0;当cos x>时,f′(x)<0.所以当0<x<时,

3332

?π?函数f(x)先减后增.而f(0)=0,f??=π-3>0,故函数f(x)

?2?

的值与0的关系与x取值有关,即2x与3sin x的大小关系不确定. 答案:否

xx2

4.已知1≤lg(xy)≤4,-1≤lg≤2,则lg的取值范围是________.

yy解析:由1≤lg(xy)≤4,-1≤lg≤2,得1≤lg x+lg y≤4,-1≤lg x-lg y≤2.

xyx213

而lg=2lg x-lg y=(lg x+lg y)+(lg x-lg y),

y22x2

所以-1≤lg≤5.

y答案:[-1,5] 三、解答题

5.已知m∈R,a>b>1,函数f(x)=解:f(a)-f(b)=∵a>b>1,

∴(a-1)(b-1)>0,b-a<0.

∴当m>0时,f(a)-f(b)<0,即f(a)<f(b); 当m=0时,f(a)=f(b);

当m<0时,f(a)-f(b)>0,即f(a)>f(b).

6.实数x,y,z满足x-2x+y=z-1且x+y+1=0,试比较x,y,z的大小. 解:由x-2x+y=z-1,得z-y=(x-1)≥0,即

2

2

2

2

mxx-1

,试比较f(a)与f(b)的大小.

mambmb-a-=. a-1b-1a-1b-1

2020

z≥y.由x+y2+1=0,得y-x=y2+y+1=?y+?2+>0,即y>x.故z≥y>x.

2

??

1?

?

34

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

2020 活页作业(一) 不等式的性质 一、选择题 1.若2-m与|m|-3异号,则实数m的取值范围是( ) A.(3,+∞) C.(2,3) B.(-3,3) D.(-3,2)∪(3,+∞) 解析:法一 因为2-m与|m|-3异号,所以(2-m)·(|m|- 3)<0,即(m-2)(|m|-3)>0. ??m≥0,所以??m-2?m-3>0 ??m<0,或??m-2?-m-3>0. 解得 m>3或0≤m<2或-3<m<0. 法二 取m=4符合题意,排除B,C两项;取m=0可排除A项. 答案:D 2.给

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com