云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 第21课时—等差数列、等比数列的性质及应用

第21课时—等差数列、等比数列的性质及应用

  • 62 次阅读
  • 3 次下载
  • 2025/6/14 14:18:17

一.课题:等差数列、等比数列的性质及应用

二.教学目标:熟练掌握等差(比)数列的基本公式和一些重要性质,并能灵活运用性质解决有关

的问题,培养对知识的转化和应用能力.

三.教学重点:等差(比)数列的性质的应用. 四.教学过程: (一)主要知识:

有关等差、等比数列的结论

1.等差数列{an}的任意连续m项的和构成的数列Sm,S2m?Sm,S3m?S2m,??仍为等差数列. 2.等差数列{an}中,若m?n?p?q,则am?an?ap?aq 3.等比数列{an}中,若m?n?p?q,则am?an?ap?aq

4.等比数列{an}的任意连续m项的和构成的数列Sm,S2m?Sm,S3m?S2m,??仍为等比数列. 5.两个等差数列{an}与{bn}的和差的数列{an?bn}仍为等差数列. 6.两个等比数列{an}与{bn}的积、商、倒数的数列{an?bn}、??an??1??、??仍为等比数列. ?bn??bn?(二)主要方法:

1.解决等差数列和等比数列的问题时,通常考虑两类方法:①基本量法:即运用条件转化为关于a1和d(q)的方程;②巧妙运用等差数列和等比数列的性质,一般地运用性质可以化繁为简,减少运算量.

2.深刻领会两类数列的性质,弄清通项和前n项和公式的内在联系是解题的关键.

(三)例题分析: 例1.(1)若一个等差数列前3项的和为34,最后三项的和为146,且所有项的和为390,则这个数列有13 项;

*(2)已知数列{an}是等比数列,且an>0,n?N,a3a5?2a4a6?a5a7?81,则a4?a6? 9 .

(3)等差数列前m项和是30,前2m项和是100,则它的前3m项和是 210 .

例2.若数列{an}成等差数列,且Sm?n,Sn?m(m?n),求Sn?m. 解:(法一)基本量法(略);

2?(1)?An?Bn?m (法二)设Sn?An?Bn,则? 2(2)??Am?Bm?n(1)?(2)得:(n2?m2)A?(n?m)B?m?n,?m?n, ∴(m?n)A?B??1,

2∴Sn?m?(n?m)A?(n?m)B??(n?m).

例3.等差数列{an}中共有奇数项,且此数列中的奇数项之和为77,偶数项之和为66,a1?1,求其项数和中间项.

解:设数列的项数为2n?1项,

2(n?1)(a1?a2n?1)n(a2?a2n)?77,S偶??66

22Sn?177?∴奇?, ∴n?6,∴数列的项数为13,中间项为第7项,且a7?11.

S偶n66则S奇?第三章 数列——第21课时:等差数列、等比数列的性质及应用

说明:(1)在项数为2n?1项的等差数列{an}中,S奇=(n+1)a中,S偶=na中,S2n+1=(2n+1)a中; (2)在项数为2n项的等差数列{an}中S奇=nan,S偶=nan?1,S2n+1=n(an?an?1).

例4.数列{an}是首项为1000,公比为

11的等比数列,数列{bn}满足bk?(lga1?lga2???lgak) 10k(1)求数列{bn}的前n项和的最大值;(2)求数列{|bn|}的前n项和Sn?. (k?N*),

4?n解:(1)由题意:an?10,∴lgan?4?n,∴数列{lgan}是首项为3,公差为?1的等差数列,

k(k?1)1n(n?1)7?n,∴bn?[3n? ]?2n22?bn?021由?,得6?n?7,∴数列{bn}的前n项和的最大值为S6?S7?

2?bn?1?0∴lga1?lga2???lgak?3k?(2)由(1)当n?7时,bn?0,当n?7时,bn?0, ∴当n?7时,Sn??b1?b2???bn?(3?7?n2)n??1n2?13n 2441213n?n?21 44当n?7时,Sn??b1?b2???b7?b8?b9???bn?2S7?(b1?b2???bn)??1213?n?n(n?7)??44∴Sn???.

?1n2?13n?21(n?7)??44例5*.若Sn和Tn分别表示数列{an}和{bn}的前n项和,对任意自然数n,有an??2n?3,2*4Tn?12Sn?13n,(1)求数列{bn}的通项公式;(2)设集合A?{x|x?2an,n?N},

B?{y|y?4bn,n?N*}.若等差数列{cn}任一项cn?A?B,1c是A?B中的最大数,且

?265?c10??125,求{cn}的通项公式.

解:(1)当n?2,n?N时:?*?4Tn?12Sn?13n,

?4Tn?1?12Sn?1?13(n?1)两式相减得:4bn?12an?13,∴bn?3an?∴数列{bn}的通项公式为bn??3n?13517??3n?,又b1??也适合上式, 4445. 4*(2)对任意n?N,2an??2n?3,4bn??12n?5??2(6n?1)?3,∴B?A,∴A?B?B

∵c1是A?B中的最大数,∴c1??17,设等差数列{cn}的公差为d,则c10??17?9d,

5?d??12,又4bn是一个以?12为公差的等差数列, 9*∴d??12k(k?N),∴d??24,∴cn?7?24n.

∴?265??17?9d??125,即?27

第三章 数列——第21课时:等差数列、等比数列的性质及应用

(四)巩固练习:

a1?a2???an(n?N*)也为等差数

n列,类比上述性质,相应地:若数列{cn}是等比数列,且cn>0(n?N*),则有dn?nC1?C2?Cn1.若数列{an}(n?N*)是等差数列,则有数列bn?(n?N*)也是等比数列.

2.设Sn和Tn分别为两个等差数列的前n项和,若对任意n?N,都有数列的第11项与第二个数列的第11项的比是说明:

*Sn7n?1 ,则第一个?Tn4n?274. 3anS2n?1. ?bnT2n?1

五.课后作业:《高考A计划》考点21,智能训练4,8,12,14,15,16.

第三章 数列——第21课时:等差数列、等比数列的性质及应用

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

一.课题:等差数列、等比数列的性质及应用 二.教学目标:熟练掌握等差(比)数列的基本公式和一些重要性质,并能灵活运用性质解决有关的问题,培养对知识的转化和应用能力. 三.教学重点:等差(比)数列的性质的应用. 四.教学过程: (一)主要知识: 有关等差、等比数列的结论 1.等差数列{an}的任意连续m项的和构成的数列Sm,S2m?Sm,S3m?S2m,??仍为等差数列. 2.等差数列{an}中,若m?n?p?q,则am?an?ap?aq 3.等比数列{an}中,若m?n?p?q,则am?an?ap?aq 4.等比数列{an}的任意连续m项的和构成的数列Sm,S2m?Sm,S3m?S2m,??仍为等比数列. 5.两个等差数列{an}与{bn}的和差的数列{an?bn}仍为等差数列. 6.两个等比数列{

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com