云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 江苏省南京市建邺区2017年中考一模数学试题(含答案)

江苏省南京市建邺区2017年中考一模数学试题(含答案)

  • 62 次阅读
  • 3 次下载
  • 2025/6/15 0:38:22

24.(7分)某水果店销售樱桃,其进价为40元/千克,按60元/千克出售,平均每天可售出

100千克.经调查发现,这种樱桃每降价1元/千克,每天可多售出10千克,若该水果店销售这种樱桃要想每天获利2240元,每千克樱桃应降价多少元?

25.(9分)已知一元二次方程x2-4mx+4m2+2m-4=0,其中m为常数.

(1)若该一元二次方程有实数根,求m的取值范围. (2)设抛物线y=x2-4mx+4m2+2m-4的顶点为M,点O为坐标原点,当m变化时,

求线段MO长度的最小值.

26.(12分)今年暑假,小勇、小红打算从城市A到城市B旅游,他们分别选择下列两种交通方

案:

方案一:小勇准备从城市A坐飞机先到城市C,再从城市C坐汽车到城市B,整个行程中,乘飞机所花的时间比汽车少用3h.如图1所示,城市A、B、C在一条直线上,且A、C两地的距离为2400km,飞机的平均速度是汽车的8倍.

方案二:小红准备坐高铁直达城市B,其离城市A的距离y2(km)与出发时间x(h)之间的函数关系如图2所示.

(1)AB两地的距离为 ▲ km; (2)求飞机飞行的平均速度;

(3)若两家同时出发,请在图2中画出小勇离城市A的距离y1与x之间的函数图像,并求

出y1与x的函数关系式.

y(km) 3000 A

图1

C

B

2400 1800 1200 600 O 1 2 3 4 5 6 7 8 9 10 11 x(h)

图2

(第26题)

OP

27.(12分)定义:当点P在射线OA上时,把的值叫做点P在射线OA上的射影值;当

OA

点P不在射线OA上时,把射线OA上与点P最近点的射影值,叫做点P在射线OA上的射影值.例如:如图1,△OAB三个顶点均在格点上,BP是OA边上的高,则点POP 1

和点B在射线OA上的射影值均为=.

OA3

B B B D O

A

C

O P A O A C 图1 图2

图3

(第27题)

(1)在△OAB中,

①点B在射线OA上的射影值小于1时,则△OAB是锐角三角形; ②点B在射线OA上的射影值等于1时,则△OAB是直角三角形; ③点B在射线OA上的射影值大于1时,则△OAB是钝角三角形. 其中真命题有

A.①② B.②③ C.①③ D.①②③

(2)已知:点C是射线OA上一点,CA=OA=1,以O为圆心,OA为半径画圆,点

B是⊙O上任意点. 1

①如图2,若点B在射线OA上的射影值为.求证:直线BC是⊙O的切线.

2

②如图3,已知D为线段BC的中点,设点D在射线OA上的射影值为x,点D在射线OB上的射影值为y,直接写出y与x之间的函数关系式.

2017年中考第一次模拟测试卷 数学参考答案及评分标准

说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.

一、选择题(每小题2分,共计12分)

题号 答案 1 D 2 C 3 B 4 D 5 C 6 C 二、填空题(每小题2分,共计20分)

7.x≥2 8.1.2629×104 9.a (a-1)2 10.0 11.4 811

12.(-1,3) 13.90° 14.45° 15.π 16. 153三、解答题(本大题共10小题,共计88分) 17.(本题6分)

m+1(m+2)(m-2)

解:原式=? ········································································· 2分

m+2(m+2)2=

m-2

······························································································ 4分 m+1

1-21

当m =1时,原式= =-. ························································· 6分

21+1

18.(本题7分)

解:解不等式①,得x≤1. ·············································································· 2分

解不等式②,得x>-2. ·········································································· 4分 所以,不等式组的解集是-2<x≤1. ······················································· 5分 画图正确(略). ···················································································· 7分 19.(本题7分)

(1)126; ···································································································· 2分 (2)图略; ·································································································· 4分 (3)在抽取的样本中,“比较喜欢”数学的人数所占的百分比为

1-32%-10%-23%=35%, ····································································· 5分 由此可估计,该校1000名学生中,“比较喜欢”数学的人数所占的百分比35%, 1000×35%=350(人). ········································································· 6分 答:估计这些学生中,“比较喜欢”数学的人数约有350人. ···························· 7分

20.(本小题满分8分)

证明:(1)∵ 四边形ABCD是平行四边形,∴ AB//CD,AB=DC.∴ ∠ABC=∠DCE. ∵ AC//DE,∴ ∠ACB=∠DEC. ································································· 3分

在△ABC和△DCE中,∠ABC=∠DCE,∠ACB=∠DEC ,AB=DC.

∴△ABC≌△DCE(AAS). ································································ 4分 (2)由(1)知△ABC≌△DCE,则有BC=CE. ∵ CD=CE, ∴ BC=CD.

∴四边形ABCD为菱形. ·········································································· 7分 ∴AC⊥BD. ························································································· 8分 21.(本题7分)

列表或树状图表示正确; ·········································································· 3分 ∵共有8种等可能的结果, 通过一次“手心手背”游戏, 小明先跳绳的有2种情况····································· 5分

2 1 ∴通过一次“手心手背”游戏,小明先跳绳的概率是: = . 84答:通过一次“手心手背”游戏,小明先跳绳的概率是 1 . ······························· 7分 422.(本题6分) 方法1: 方法2: ··················································································································· 6分 23.(本题7分)

解:过点A作AD⊥OB于点D.

由题意得AN⊥MN,OB⊥MN,AD⊥OB,∴四边形ANMD是矩形,

O ∴DM=AN, ····························································································· 2分

设OB=OA=x cm,在Rt?OAD中,∠ODA=90°, x+5-14A C ODD cos∠AOD= = ≈0.6. ······························································ 5分

OAx解得x=15cm.

B 经检验,x=15为原方程的解. 答:细线OB的长度是15cm. ······································································ 7分 N M

24.(本小题满分7分)

解:设每千克樱桃应降价x元,根据题意,得 ······················································ 1分

(60-x-40)(100+10x) = 2240. ······················································· 4分 解得:x1=4,x2=6. ··············································································· 6分

答:每千克樱桃应降价4元或6元. ··························································· 7分

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

24.(7分)某水果店销售樱桃,其进价为40元/千克,按60元/千克出售,平均每天可售出100千克.经调查发现,这种樱桃每降价1元/千克,每天可多售出10千克,若该水果店销售这种樱桃要想每天获利2240元,每千克樱桃应降价多少元? 25.(9分)已知一元二次方程x2-4mx+4m2+2m-4=0,其中m为常数. (1)若该一元二次方程有实数根,求m的取值范围. (2)设抛物线y=x2-4mx+4m2+2m-4的顶点为M,点O为坐标原点,当m变化时,求线段MO长度的最小值. 26.(12分)今年暑假,小勇、小红打算从城市A到城市B旅游,他们分别选择下列两种交通方案: 方案一:小勇准备从城市A坐飞机先到城市C,再从城市C坐汽车到城市B,整个行程中,

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com