云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 2014届高三数学(人教A版)一轮复习练习曲:限时规范特训 第6章 不等式、推理与证明 第1讲 Word版含解析

2014届高三数学(人教A版)一轮复习练习曲:限时规范特训 第6章 不等式、推理与证明 第1讲 Word版含解析

  • 62 次阅读
  • 3 次下载
  • 2025/6/15 1:30:44

第六章 第1讲

(时间:45分钟 分值:100分)

一、选择题

1. [2013·安徽七校联考]若a

A. > abC. |a|>|b| 答案:B

1111

解析:由a0,因此a·成立;由a-b>0,因此

ababab111

|a|>|b|>0成立;又y=()x是减函数,所以()a>()b成立.

222

2. “a+c>b+d”是“a>b且c>d”的( ) A.必要不充分条件 C.充分必要条件 答案:A

解析:易得a>b且c>d时必有a+c>b+d.若a+c>b+d时,则可能有a>d且c>b,选A.

3. [2013·汕头检测]已知a<0,-1ab>ab2 C. ab>a>ab2 答案:D

解析:∵a<0,-10,ab-ab2=ab(1-b)>0. ∴ab>ab2>a.

11

也可利用特殊值法,取a=-2,b=-,则ab2=-,ab=1,从而ab>ab2>a.

22故应选D.

11

4. 在所给的四个条件:①b>0>a;②0>a>b;③a>0>b;④a>b>0中,能推出<成立的ab有( )

A. 1个 C. 3个 答案:C

B. 2个 D. 4个 B. ab2>ab>a D. ab>ab2>a B.充分不必要条件 D.既不充分也不必要条件 B. 2a>2b 11D. ()a>()b

22

b-a11

解析:<成立,即<0成立,逐个验证可得,①②④满足题意.

abab5. [2013·沈阳质检]设a,b∈R,若b-|a|>0,则下列不等式中正确的是( ) A. a-b>0 C. a2-b2>0 答案:B

解析:由b>|a|,可得-b0,所以选项B正确.由b>|a|,两边平方得b2>a2,则a2-b2<0,所以选项C错误,由-b0,所以选项D错误,故选B.

6. [2013·金版原创]若a>b>0,则下列不等式中一定成立的是( ) 11

A. a+>b+

ba11

C. a->b-

ba答案:A

1

解析:取a=2,b=1,排除B与D;另外,函数f(x)=x-是(0,+∞)上的增函数,

x1

但函数g(x)=x+在(0,1]上递减,在[1,+∞)上递增,所以,当a>b>0时,f(a)>f(b)必定成

x1111

立,但g(a)>g(b)未必成立,这样,a->b-?a+>b+. abba

二、填空题

7. [2013·金华调研]若1

8. [2013·临沂模拟]若x>y,a>b,则在①a-x>b-y,②a+x>b+y,③ax>by,④x-b>yab

-a,⑤>这五个式子中,恒成立的所有不等式的序号是________.

yx

答案:②④

解析:令x=-2,y=-3,a=3,b=2, 符合题设条件x>y,a>b,

∵a-x=3-(-2)=5,b-y=2-(-3)=5, ∴a-x=b-y,因此①不成立.

又∵ax=-6,by=-6,∴ ax=by,因此③也不正确.

bb+1B. > aa+1D.

2a+ba

> a+2bbB. a+b>0 D. a3+b3<0

a3b2

又∵==-1,==-1,

y-3x-2ab

∴=,因此⑤不正确. yx由不等式的性质可推出②④成立.

1

9. [2013·辽阳模拟]给出下列条件:①1

b1

b

答案:②

1

解析:∵logb=-1,若1

b11

则<<1

∴loga

ba故条件①不可以; 11若0

ba111

∴logab>loga>loga=-1=logb,

bab故条件②可以; 1

若0

b

1

∴loga>0,logab<0,条件③不可以.

b三、解答题

11xy

10. 已知a,b,x,y∈(0,+∞)且>,x>y,求证:>.

abx+ay+bbx-ayxy

证明:∵-=,

x+ay+b?x+a??y+b?11

又∵>且a,b∈(0,+∞),

ab∴b>a>0,

又∵x>y>0,∴bx>ay>0, ∴∴

bx-ay

>0,

?x+a??y+b?xy>. x+ay+b

11. [2013·大庆调研]已知a,b,c∈{正实数},且a2+b2=c2,当n∈N,n>2时比较cn

与an+bn的大小.

解:∵a,b,c∈{正实数},∴an,bn,cn>0, an+bnanbn而n=()+().

ccc

ab

∵a2+b2=c2,则()2+()2=1,

ccab

∴0<<1,0<<1.

cc∵n∈N,n>2, aabb∴()n<()2,()n<()2, cccc

an+bnanbna2+b2

∴n=()+()<2=1,

cccc∴an+bn

x12. [2013·锦州模拟]已知x,y为正实数,满足1≤lgxy≤2,3≤lg≤4,求lg(x4y2)的取值

y范围.

解:设a=lgx,b=lgy,则lg(xy)=a+b, x

lg=a-b,lg(x4y2)=4a+2b, y

设4a+2b=m(a+b)+n(a-b),

???m+n=4,?m=3,∴?解得? ??m-n=2.n=1.??

又∵3≤3(a+b)≤6,3≤a-b≤4. ∴6≤4a+2b≤10.

即lg(x4y2)的取值范围为[6,10].

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

第六章 第1讲 (时间:45分钟 分值:100分) 一、选择题 1. [2013·安徽七校联考]若a abC. |a|>|b| 答案:B 1111解析:由a0,因此ababab111|a|>|b|>0成立;又y=()x是减函数,所以()a>()b成立. 2222. “a+c>b+d”是“a>b且c>d”的( ) A.必要不充分条件 C.充分必要条件 答案:A 解析:易得a>b且c>d时必有a+c>b+d.若a+c>b+d时

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com