云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > [真题]2018年山西省中考数学试卷含答案解析(Word版)

[真题]2018年山西省中考数学试卷含答案解析(Word版)

  • 62 次阅读
  • 3 次下载
  • 2025/5/3 6:35:10

21. (本题 8 分 ) 请 阅 读 下 列 材 料 , 并 完 成 相 应 的 任 务 :

在 数 学 中 ,利 用 图 形 在 变 化 过 程 中 的 不 变 性 质 ,常 常 可 以 找 到 解 决 问 题 的 办 法 .著 名 美 籍 匈 牙 利数学家波利亚在 他 所著的《数学的发现 》一书中有这样一个 例子:试问如何在一 个三角形 ABC 的 AC 和 BC 两 边 上 分 别 取 一 点 X 和 Y,使得 AX=BY=XY.( 如 图 ) 解 决 这 个 问 题 的 操 作 步 骤 如 下 : 第 一 步 ,在 CA 上 作 出 一 点 D,使 得 CD=CB,连 接 BD.第 二 步 ,在 CB 上 取 一 点 Y’ ,作 Y’ Z’ //CA, 交 BD 于点 Z’ ,并在 AB 上取一点 A’ ,使 Z’ A’ =Y’ Z’ .第 三 步 , 过 点 A 作 AZ//A’ Z’ ,交 BD 于点 Z.第 四 步 , 过 点 Z 作 ZY//AC,交 BC 于点 Y,再过 Y 作 YX//ZA,交 AC 于点 X. 则有 AX=BY=XY. 下面是该结论的部 分 证明: 证明: A Z / / A ' Z??BA' Z ' ? ?BAZ 又 ∠A'BZ'=∠ABZ. ?△BA' Z △BAZ ? Z ' A ' BZ ' ? .ZA BZ Y ' Z ' ?BZ ' Z ' A ' ?Y ' Z ' 同 理 可 得 ?. ? ?.YZ BZ ZA YZ Z ' A' ? Y ' Z ' , ?ZA ? YZ. ... 任务: ( 1) 请 根 据 上 面 的 操 作 步 骤 及 部 分 证 明 过 程 , 判 断 四 边 形 AXYZ 的形状,并加以证 明 ; ( 2) 请 再 仔 细 阅 读 上 面 的 操作步骤, 在 ( 1)的基础上完成 AX=BY=XY 的证明过程; ....

( 3)上 述 解 决 问 题 的 过 程 中 ,通 过 作 平 行 线 把 四 边 形 BA’ Z’ Y’ 放大得到四边形 BAZY,从 而 确 定了点 Z, Y 的 位 置 , 这 里 运 用 了 下 面 一 种 图 形 的 变 化 是 .

A.平移 B.旋转 C.轴对称 D.位似 【考点】 菱形的性 质 与 判 定 ,图形的位似 【解析】 ( 1) 答 :四边形 AXYZ 是菱形 . 证明: Z Y / / A C, Y X/ / Z?A, 四边形 AXYZ 是 平 行 四 边 形 . ZA ? YZ ,?? AXYZ 是菱形 ( 2) 答 :证明: C D? C B, ??1 ? ?2 ZY / / AC , ??1 ? ?3 . ??2=?3 .??YB ? YZ . 四边形 AXYZ 是 菱 形 ,? AX=XY=YZ.

?AX=BY=XY.

(3)上 述 解 决 问 题 的 过 程 中 ,通 过 作 平 行 线 把 四 边 形 BA’ Z’ Y’ 放大得到四边形 BAZY,从 而 确定

了点 Z, Y 的 位 置 , 这 里 运 用 了 下 面 一 种 图 形 的 变 化 是 D ( 或 位 似 ) . A.平移 B.旋转 C.轴对称 D.位似

9 / 15

22. (本题 12 分 )综 合 与 实 践 问 题 情 境 : 在 数 学 活 动 课 上 , 老 师 出 示 了 这 样 一 个 问 题 : 如 图 1, 在 矩 形 ABCD 中, AD=2AB, E 是 AB 延 长 线 上 一 点 ,且 BE=AB,连 接 DE,交 BC 于点 M,以 DE 为 一 边 在 DE 的 左 下 方 作 正 方 形 DEFG, 连接 AM. 试 判 断 线 段 AM 与 DE 的 位 置 关 系 . 探 究 展 示 : 勤 奋 小 组 发 现 , AM 垂直平分 DE,并展示了如下的 证 明方法: 证明: B E ? A B, ?? AE ? 2 AB AD ? 2 AB,?? AD ? AE 四边形 ABCD 是 矩 形 ,? AD / / BC.

EMEB?( 依 据 1 )

?DMABEM?1? EM ? DM . BE ? AB ,??

DM即 AM 是△ ADE 的 DE 边上的中线,

又 AD ? AE, ? AM ? DE. (依据 2)

?AM 垂直平分 DE.

反 思 交 流 : (1)? 上 述 证 明 过 程 中 的 “ 依 据 1”“ 依 据 2”分别是指什么?

? 试 判 断 图 1 中 的 点 A 是否在线段 GF 的 垂 直 平 分 上 , 请 直 接 回 答 , 不 必 证 明 ;

(2)创 新 小 组 受 到 勤 奋 小 组 的 启 发 , 继 续 进 行 探 究 , 如 图 2, 连 接 CE,以 CE 为 一 边 在 CE 的左下 方作正方形 CEFG, 发 现 点 G 在线段 BC 的 垂 直 平 分 线 上 , 请 你 给 出 证 明 ; 探 索 发 现 :

(3)如图 3,连接 CE,以 CE 为一边在 CE 的右上方作正方形 CEFG,可以发现点 C,点 B 都在线段 AE 的垂直平分线上, 除此之外,请观察 矩 形 ABCD 和正方形 CEFG 的顶点与边,你还能 发现哪个 顶点在哪条边的垂 直 平分线上,请写出 一 个你发现的结论, 并 加以证明 .

【考点】 平 行 线 分 线 段 成 比 例 , 三 线 合 一 , 正 方 形 、 矩 形 性 质 , 全 等 【解析】 (1) 答 :? 依据 1:两 条 直 线 被 一 组 平 行 线 所 截 ,所 得 的 对 应 线 段 成 比 例( 或 平 行 线 分 线 段 成比例) .

依据 2: 等 腰 三 角 形 顶 角 的 平 分 线 , 底 边 上 的 中 线 及 底 边 上 的 高 互 相 重 合 ( 或 等 腰 三 角 形的“三线合一 ”) . ? 答:点 A 在 线 段 GF 的垂直平分线上 . (2) 证明 :过点 G 作 GH ? BC 于点 H,

四 边形 ABCD 是 矩 形 , 点 E 在 AB 的 延 长 线 上 ,

??CBE ? ?ABC ? ?GHC ? 90?. ??1+?2=90?.

四边形 CEFG 为 正 方 形 ,

?CG ? CE, ?GCE ? 90?.?1? ?3 ? 90?. ??2=?3. ?△GHC ≌ △CBE.?? HC ? BE. 四边形 ABCD 是 矩 形 , ? AD ? BC.

AD ? 2 AB, BE ? AB, ? BC ? 2BE ? 2HC.?? HC ? BH.

?GH 垂直平分 BC.?点 G 在 BC 的 垂 直 平 分 线 上

10 / 15

( 3)答:点 F 在 BC 边的垂直平分线上 ( 或点 F 在 AD 边 的 垂 直 平 分 线 上 ) . 证 法 一 : 过点 F 作 FM ? BC 于点 M,过点 E 作 EN ? FM 于点 N.

??BMN ? ?ENM ? ?ENF ? 90?.

四边形 ABCD 是 矩 形 , 点 E 在 AB 的延长线 上,

? ?CBE ? ?ABC ? 90?.?四边形 BENM 为矩形 .

? BM ? EN , ?BEN ? 90?. ??1? ?2 ? 90?.

四边形 CEFG 为 正 方 形 ,

? EF ? EC, ?CEF ? 90?. ??2 ? ?3 ? 90?.

??1=?3.

?CBE ? ?ENF ? 90?,

?△ENF≌△EBC.

? NE ? BE. ? BM ? BE.

四边形 ABCD 是 矩 形 , ? AD ? BC. AD ? 2 AB, AB ? BE.?? BC ? 2BM .?? BM ? MC.

?FM 垂直平分 BC, ?点 F 在 BC 边 的 垂 直 平 分 线 上 .

证 法 二 : 过 F 作 FN ? BE 交 BE 的 延 长 线 于 点 N,连接 FB, FC. 四边形 ABCD 是矩形,点 E 在 AB 的延长线上, ?∠ CBE=∠ ABC=∠ N=90°. ?∠ 1+∠ 3=90°. 四边形 CEFG 为正方形,? EC=EF,∠ CEF=90°. ?∠ 1+∠ 2=90°. ?∠ 2=∠ 3. ?△ ENF ? △ CBE. ?NF=BE,NE=BC. 四边形 ABCD 是矩形,? AD=BC. AD=2AB, BE=AB. ?设 BE=a,则 BC=EN=2a,NF=a.

?BF=CF. ?点 F 在 BC 边 的 垂 直 平 分 线 上 .

11 / 15

23. (本题 13 分 )综 合 与 探 究

121 y?x?x?4与 x 轴交于 A , B 两点(点 A 在点 B 的 如图,抛物线左 侧 ), 与 y 轴交于点 C ,连接

33AC , BC .点 P 是 第 四 象 限 内 抛 物 线 上 的 一 个 动 点 ,点 P 的横坐标为 m ,过 点 P 作 PM ? x 轴 ,垂 足 为点

M , PM 交 BC 于点 Q ,过点 P 作 PE∥ AC 交 x 轴于点 E ,交 BC 于点 F . ( 1) 求 A , B , C 三点的坐标; ( 2) 试探究在点 P 的 运 动 的 过 程 中 ,是 否 存 在 这 样 的 点 Q ,使 得 以 A , C , Q 为 顶 点 的 三 角 形 是 等腰三角形 .若 存 在 , 请 直接写出此时点 Q 的 坐 标 ; 若 不 存 在 , 请 说明理由; ..( 3) 请用含 m 的 代 数 式 表 示 线 段 QF 的长,并求出 m 为 何 值 时 QF 有最大值 .

【考点】 几 何 与 二 次 函 数 综 合 【解析】

121( 1)解 : 由 y ? 0 ,得x?x?4=0

33解得 x1 ? ?3 , x2 ? 4 .

? 点 A , B 的坐标分别为 A(-3,0), B( 4, 0) 由 x ? 0 ,得 y ? ?4 .? 点 C 的 坐 标 为 C( 0, -4) .

52 5 2

, ? 4) , Q 2 (1,?3) . ( 2) 答: Q 1 ( 2 2

( 3) 过点 F 作 FG ? PQ 于点 G . 则 FG∥x 轴 .

由 B( 4, 0), C( 0, -4),得 △O B C为 等 腰 直 角 三 角 形 .

? ?OBC ? ?QFG ? 45? .?? GQ ? FG ?PE∥ AC ,?? ?1 ? ?2 .

FG∥x 轴,? ?2 ? ?3 .?? ?1 ? ?3 .

2 FQ . 2?FGP ? ?AOC ? 90? ,?? △FGP∽△AOC .

12 / 15

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

21. (本题 8 分 ) 请 阅 读 下 列 材 料 , 并 完 成 相 应 的 任 务 : 在 数 学 中 ,利 用 图 形 在 变 化 过 程 中 的 不 变 性 质 ,常 常 可 以 找 到 解 决 问 题 的 办 法 .著 名 美 籍 匈 牙 利数学家波利亚在 他 所著的《数学的发现 》一书中有这样一个 例子:试问如何在一 个三角形 ABC 的 AC 和 BC 两 边 上 分 别 取 一 点 X 和 Y,使得 AX=BY=XY.( 如 图 ) 解 决 这 个 问 题 的 操 作 步 骤 如 下 : 第 一 步 ,在 CA 上 作 出 一 点 D,使 得 CD=CB,连 接 BD.第 二 步 ,在 CB 上 取 一 点 Y’ ,作 Y’ Z’ //CA, 交 BD 于点 Z’ ,并在 AB 上取一点 A’ ,使 Z’ A’ =Y’ Z’ .第 三 步 , 过

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com