云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 2015年六年级第六单元 整理和复习教案 - 图文

2015年六年级第六单元 整理和复习教案 - 图文

  • 62 次阅读
  • 3 次下载
  • 2025/6/14 11:50:06

3、情感态度和价值观:发展应用意识,形成解决问题的一些策略、方法,愿意对数学问题进行讨论,提高分析问题和解决问题的能力。

教学重点:掌握解决问题的主要步骤,形成解决问题的一些策略、方法。 教学难点:提高分析问题和解决问题的能力。 教具准备:多媒体课件

教学过程: 一、复习引入

1.说说解决问题的主要步骤。

2.我们学过的解决问题有哪些类型?------出示课题

二、解决问题类型 1.简单应用题的类型

简单应用题:指一步计算解答的应用题 2.复合应用题的类型:板书

复合应用题:是用两步或两步以上计算来解答的应用题。 (1)“归一”问题:

此类应用题中暗含着单一量不变,文字叙述中多带有类似“照这样计算”的字样,其解题的关键是从已知的一种对应量中求出单一量(即归一),再以它为标准,根据题目要求算出所求量。

例如:一台拖拉机2.5小时耕地2公顷,照这样,这台拖拉机耕完4.8公顷的地需多少小时?

学生独立完成后交流。 (2)“归总”问题:

此类题中暗含总量不变,即乘积不变。其解题的关键是先求出总数(即归总),再根据总数算出所求量。

例如:一批货物,每箱装36件,需要40只箱子。如果每箱多装9件,可以节省几只箱子?

学生独立完成后交流。 (3)行程问题:

根据速度、时间和路之间的关系,计算相向、相背或同向运动的问题,称为行程问题。其基本的数量关系式为:速度×时间=路程。路程÷速度=时间,路程÷时间=速度。

①相遇问题,即同时相向而行并相遇(或同时背向而行):速度和×(相遇)时间=总路程。

②追及问题,即同时同向而行,速度慢的在前,速度快的在后:速度×追及时间=路程差

例如:客、货两车分别从甲、乙两地同时出发,相向而行,4.5小时后相遇。客车每小

13

时行56千米,货车每小时行60千米。甲、乙两地相距多少千米?

学生独立完成后交流。 (4)工程问题:

把工作总量看作单位“1”,工作效率用单位时间内做工时间的“几分之一”表示。根据工作总量、工作效率、工作时间其中两种量求出第三种量。

数量关系式为:

工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率

例如:一个工程计划生产570个零件,已经做了10天,平均每天生产21个,剩下的要在18天完成,平均每天要生产多少个?

学生独立完成后交流。 (5)分数应用题:

关键是找准标准量,即单位“1”。若单位“1”已知,用乘法计算;若单位“1”未知,用除法计算。

求甲比乙多(或少)几分之几(百分之几)的解题规律:甲乙差÷乙

已知甲比乙多(或少)几分之几(百分之几),求甲的解题规律:乙×(1±几/几) 已知甲比乙多(或少)几分之几(百分之几),求乙的解题规律:甲÷(1±几/几) 利息=本金×利率×时间

税后利息=本金×利率×时间×(1-5%)

应纳税额=应纳税所得额×税率新|课 |标 |第 |一| 网 仓库里有一批化肥,第一次取出总数的库里还剩下24袋。两次共取出多少袋?

学生独立完成后交流。 三、巩固练习

练习十五的10---14题。

四、课堂总结:回顾本节课的学习,说一说你有哪些收获? 五:作业

第7课时

教学课题:式和方程(一) 教学内容:教材第81页例1、例2、“做一做”,练习十六第1、2、3、4题。

教学目标: 1、知识与技能:

12,第二次取出的比总数的少12袋,这时仓

35 14

(1)进一步认识用字母表示数的意义及其作用,能正确地用含有字母的式子表示数量及数量关系、计算公式等。

(2)能根据字母所取的数值,算出含有字母的式子的值。

2、过程与方法:经历交流、讨论、练习等学习过程,进一步认识用字母表示数的意义及其作用,能根据字母所取的数值,算出含有字母的式子的值。

3、情感态度和价值观:感受数学与现实生活的联系,培养学生初步的代数思 想和良好的学习习惯。

教学重点:能用字母表示常见的数量关系。

教学难点:能根据字母所取的数值,算出含有字母的式子的值。 教具准备:多媒体课件。

教学过程: ------出示课题 一、用字母表示数

1、用字母表示数的作用和意义?

用字母表示数可以简明地表示数量关系、运算定律和计算公式,为研究和解决问题带来许多方便。 2、说一说你会用字母表示什么?举例说明。出示例1

3、说一说,在含有字母的式子里,数与字母、字母与字母相乘,书写时应注意什么?出示例2

如:①a乘4.5应该写作4.5a; ②s乘h应该写作sh; ③路程、速度、时间的数量关系是s=vt 4、你还知道哪些用字母表示的数量关系或计算公式? 学生交流、展示。

如(1)用字母表示运算定律

加法交换律:____________________________________ 加法结合律:____________________________________ 乘法交换律:____________________________________ 乘法结合律:____________________________________ 乘法分配律:____________________________________ (2)用字母表示计算公式

长方形面积公式:_________________ 正方形面积公式:_________________ 教学过程: ------出示课题 一、用字母表示数

1、用字母表示数的作用和意义?

用字母表示数可以简明地表示数量关系、运算定律和计算公式,为研究和解决问题带来许多方便。

15

2、说一说你会用字母表示什么?举例说明。出示例1

3、说一说,在含有字母的式子里,数与字母、字母与字母相乘,书写时应注意什么?出示例2

如:①a乘4.5应该写作4.5a; ②s乘h应该写作sh; ③路程、速度、时间的数量关系是s=vt 5、你还知道哪些用字母表示的数量关系或计算公式? 学生交流、展示。

如(1)用字母表示运算定律

加法交换律:____________________________________ 加法结合律:____________________________________ 乘法交换律:____________________________________ 乘法结合律:____________________________________ 乘法分配律:____________________________________ (2)用字母表示计算公式

长方形面积公式:_________________ 正方形面积公式:_________________ 长方体体积公式:_________________ 正方体体积公式:_________________ 圆的周长:_______________________ 圆的面积:_______________________ 圆柱体积:_______________________ 圆锥体积:_______________________ (3)用字母表示的数量关系 总价=单价×数量 单价=总价÷数量 ……

二、知识应用:

独立完成P81 “做一做”。

展示连线作业。

(1)师:你觉得在这些用字母表示的式子中,我们曾经出现过哪些问题? 提醒学生注意a3、3a、

a 316

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

3、情感态度和价值观:发展应用意识,形成解决问题的一些策略、方法,愿意对数学问题进行讨论,提高分析问题和解决问题的能力。 教学重点:掌握解决问题的主要步骤,形成解决问题的一些策略、方法。 教学难点:提高分析问题和解决问题的能力。 教具准备:多媒体课件 教学过程: 一、复习引入 1.说说解决问题的主要步骤。 2.我们学过的解决问题有哪些类型?------出示课题 二、解决问题类型 1.简单应用题的类型 简单应用题:指一步计算解答的应用题 2.复合应用题的类型:板书 复合应用题:是用两步或两步以上计算来解答的应用题。 (1)“归一”问题: 此类应用题中暗含着单一量不变,文字叙述中多带有类似“照这样计算”的字样,其解题的关键是从已知的一种对应量中求

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com