当前位置:首页 > 复旦高等数学答案
?bc?2
hsin?s0h ?s0h ?hcot? ? ? s0h
2?cos?sin? h??
2?cos40sin40 ? h
【篇二:高等数学复旦大学版黄立宏修订版习题二答案
详解】
ass=txt>详解
1. 设s?ds12gt,求dt2. t?2 解:dsds?2g. ?gt,故dtt?2dt 2.(1) 设f(x)?1,求f?(x0)x
0(x0?0); 解:f?(x0)?f?(x)x?x??1. 2x0
(2) 设f(x)?x(x?1)(x?2)???(x?n),求f?(0). 解:
f?(0)?limf(x)?f(0)?lim(x?1)(x?2)???(x?n)x?0x?0 x?0 ?(?1)nn!
23. 试求过点(3,8)且与曲线y?x相切的直线方程.
解:曲线上任意一点(x,y)处的切线斜率为k?2x.因此过(3,8)且与曲线相切的直线方程为:
?y?8?2x(x?3)y?8?2x(x?3),且与曲线的交点可由方程组解得? 2?y?x
为(2,4),(4,16)即为切点.
故切线方程为:y?4?4(x?2),y?16?8(x?4).
4.下列各题中均假定f?(x0)存在,按照导数定义观察下列极限,指出a表示什么. f(x0??x)?f(x0)?a; ?x?0?x
f(x0??x)?f(x0)f(x0??x)?f(x0)??lim??f?(x0) 解:?lim?x?0?x?0?x??x(1) lim
故a??f?(x0) (2) f(x0)?0,limx?x0f(x)?a; x0?x 解:limf(x) x??limf(x)
x?x??f?(00?xx?xxx 00) 0?x
故a??f?(x0) (3) limf(x0?h)?f(x0?h) h?0h?a. 解:
limf(x0?h)?f(x0?h)?f(x0?h)?f(x0)f(x0?h)?f(x0)? h?0h?limh?0??h?h??
?limf(x0?h)?f(x0)f(x0?h)?f(x0) h?0h?limh?0?h
?f?(x0)?f?(x0)?2f?(x0) 故a?2f?(x0).
5.求下列函数的导数: (1) y?; 解:y??
(2) y????2?5 解:y3x3 (3) y?1
解:y?x2?25 3?2?x6 ??1 6x?5 y6. 6
.讨论函数y在x?0点处的连续性和可导性. 解:x?00?f(0),故函数在x?0处连续. 又lim0?2
x?0x?0?limx?0x3??,故函数在x?0处不可导.
7. 如果f(x)为偶函数,且f?(0)存在,证明:f?(0)?0. 证明:
f?(0)??limf(?x)?f(0)x?0?x??limf(??x)?f(0)x?0?x ???limf(??x)?f(0)x?0??x??f?(0), 故f?(0)?0.
8.求下列函数在x0处的左、右导数,从而证明函数在x0处不可导.
(1) y???sinx,x?0,
?x3,x?0,x0?0; 证明:ff(x)?f(0)
??(0)?xlim?0?x?0?xlimsinx?0?x?1, ff(x)?f(0)x3
??(0)?limx?0?x?0?xlim?0?x?0,
因f??(0)?f??(0),故函数在x0?0处不可导. ? (2) y??x
?1?e1,x?0,x ?0?0; ?0,x?0, 证明:ff(x)?f(0)
??(0)?xlim?0?x?0?lim1 x?0?1?e1?0, ff(x)?f(0) ??(0)?limx?0?x?0?lim1
x?0?1?e1?1, 因f??(0)?f??(0),故函数在x0?0处不可导. (3) y?x?1,
??x2,x?1,x0?1. 证明:ff(x)?f(1)
??(1)?limx?1?x?1?lim1 x?1?x?1?1 2,
?limf(x)?f(1)x2 f?1
??(1)x?1?x?1?limx?1?x?1?2,
因f??(1)?f??(1),故函数在x0?1处不可导. 9.已知f(x)???sinx, ?x,x?0,求f?(x). x?0,
解:当x?0时,f?(x)?cosx, 当x?0时,f?(x)?1,
sinx?0x?0当x?0时,f??(0)?limx?0?x?0?1, f??(0)?x?l0?ix?0? 1,
故f?(0)?1.
综上所述知f?(x)???cosx,x?0, ?1,x?0.
10.设函数f(x)???x2,x?1, ?ax?b,x?1.
为了使函数f(x)在x?1点处连续且可导,a,b应取什么值? 解:因lim2
x?1?f(x)?limx?1?x?1?f(1)
xlim?1?f(x)?lim(x?1?ax?b)?a?b
要使f(x)在x?1处连续,则有a?b?1, 又ff(x)?f(1)x2 ??(1)?limx?1?x?1?lim?1 x?1?x?1?2,
f??(1)?limax?b?1ax x?1?x?1?lim?a x?1?x?1?a,
要使f(x)在x?1处可导,则必须f??(1)?f??(1),
即a?2.故当a?2,b??1时,f(x)在x?1处连续且可导.
11. 讨论下列函数在指定点的连续性与可导性: (1) y?sinx,x?0; 解:因为limx?0y?0?yx?0,所以此函数在x?0处连续. 又ff(x)?f(0) ??(0)?limx?0?x?0?lim?sinx x?0?x??1, ff(x)?f(0)sinx
??(0)?xlim?0?x?0?xlim?0?x?1,
f??(0)?f??(0),故此函数在x?0处不可导. 1?2xsin,x?0,?(2) y?? x?0; x?x?0,?0, 1?0?y(0),故函数在x?0处连续. x?0x
1x2sinf(x)?f(0)?0, 又y?(0)?lim?limx?0x?0x?0x 故函数在x?0处可导. 解:因为limxsin2 (3) y??x?1,?x,x?1. 2?x,x?1,? limf(x)?lim(2?x)?1?x?1
x?1解:因为 x?1?x?1?limf(x)?limx?1?
x?1 x?1?limf(x)?limf(x)?f(1)?1,故函数在x=1处连续. ? 又f??(1)?lim?f(x)?f(1)x?1?lim?1 x?1x?1?x?1x?1 f(x)?f(1)2?x?1f??(1)?lim?lim??1 ?x?1?x?1x?1x?1 f??(1)?f??(1),故函数在x=1处不可导.
12. 证明:双曲线xy?a上任一点处的切线与两坐标轴构成的三角形的面积都等于2a.
证明:在双曲线上任取一点m(x0,y0), 22 a2a2
则y?,y???2,y?xxx?0a2??2, x0 a2
则过m点的切线方程为:y?y0??2(x?x0) x0 2x0y0x0a2
令y?0?x?2?x0?2?x0?2x0 aa
得切线与x轴的交点为(2x0,0), xya2 令x?0?y??y0?00?y0?2y0 x0x0 得切线与y轴的交点为(0,2y0),
【篇三:高等数学复旦大学出版社习题答案三】
共分享92篇相关文档