当前位置:首页 > 1990年全国高考数学文科
连结OC,于是OC⊥AB,若设点D的坐标是(1,0),再连结OA,OB,则有
解法三:由题设得 4(sinα+sinβ)=3(cosα+cosβ).
将②式代入①式,可得 sin(α-?)=sin(?-β). 于是 α-?=(2k+1)π-(?-β)(k∈Z), 或 α-?=2kπ+(?-β)(k∈Z).
若 α-?=(2k+1)π-(?-β)(k∈Z),则α=β+(2k+1)π(k∈Z). 于是 sinα=-sinβ,即sinα+sinβ=0.
由此可知 α-?=2kπ+(?-β)(k∈Z). 即 α+β=2?+2kπ(k∈Z).
(23)本小题考查直线和平面,直线和直线的位置关系,二面角等基本知识,以及逻辑推理能力和空间想象能力.
解法一:由于SB=BC,且E是SC的中点,因此BE是等腰三角形SBC的底边SC的中线,所以SC⊥BE.
又已知 SC⊥DE,BE∩DE=E, ∴ SC⊥面BDE, ∴ SC⊥BD.
又 ∵SA⊥底面ABC,BD在底面ABC上,∴SA⊥BD. 而 SC∩SA=S,∴BD⊥面SAC. ∵ DE=面SAC∩面BDE,DC=面SAC∩面BDC, ∴ BD⊥DE,BD⊥DC.
∴ ∠EDC是所求的二面角的平面角. ∵ SA⊥底面ABC,∴SA⊥AB,SA⊥AC.
又已知DE⊥SC,所以∠EDC=60°,即所求的二面角等于60°.
解法二:由于SB=BC,且E是SC的中点,因此BE是等腰三角形SBC的底边SC的中线,所以SC⊥BE.
又已知 SC⊥DE,BE∩DE=E. ∴ SC⊥面BDE, ∴ SC⊥BD.
由于SA⊥底面ABC,且A是垂足,所以AC是SC在平面ABC上的射影.由三垂线定理的逆定理得BD⊥AC;又因E∈SC,AC是SC在平面ABC上的射影,所以E在平面ABC上的射影在AC上,由于D∈AC,所以DE在平面ABC上的射影在AC上,根据三垂线定理又得BD⊥DE.
∵DE面BDE,DC面BDC,
∴∠EDC是所求的二面角的平面角. 以下同解法一.
(24)本小题考查对数,不等式的基本知识及运算能力.
解:原不等式可化为
loga(4+3x-x2)>loga2(2x-1). ①
当0 即当01时,①式等价于 (25)本小题考查复数与解方程等基本知识以及综合分析能力. 解法一:设z=x+yi,代入原方程得 于是原方程等价于方程组 由②式得y=0或x=0.由此可见,若原方程有解,则其解或为实数或为纯虚数.下面分别加以讨论. 情形1. 若y=0,即求原方程的实数解z=x.此时,①式化为 x2+2│x│=a. ③ (Ⅰ)令x>0,方程③变为x2+2x=a. ④ 由此可知:当a=0时,方程④无正根; (Ⅱ)令x<0,方程③变为x2-2x=a. ⑤ 由此可知:当a=0时,方程⑤无负根; (Ⅲ)令x=0,方程③变为0=a. ⑥ 由此可知:当a=0时,方程⑥有零解x=0; 当a>0时,方程⑥无零解. 所以,原方程的实数解是: 当a=0时,z=0; 情形2. 若x=0,由于y=0的情形前已讨论,现在只需考查y≠0的情形,即求原方程的纯虚数解z=yi(y≠0).此时,①式化为 -y2+2│y│=a. ⑦ (Ⅰ)令y>0,方程⑦变为-y2+2y=a,即(y-1)2=1-a. ⑧ 由此可知:当a>1时,方程⑧无实根. 从而, 当a=0时,方程⑧有正根 y=2; (Ⅱ)令y<0,方程⑦变为-y2-2y=a,即(y+1)2=1-a. ⑨ 由此可知:当a>1时,方程⑨无实根. 从而, 当a=0时,方程⑨有负根 y=-2; 所以,原方程的纯虚数解是: 当a=0时,z=±2i; 而当a>1时,原方程无纯虚数解. 解法二:设z=x+yi,代入原方程得 于是原方程等价于方程组 由②式得y=0或x=0.由此可见,若原方程有解,则其解或为实数,或为纯虚数.下面分别加以讨论. 情形1. 若y=0,即求原方程的实数解z=x.此时,①式化为 x2+2│x│=a. 情形2. 若x=0,由于y=0的情形前已讨论,现在只需考查y≠0的情形,即求原方程的纯虚数解z=yi(y≠0).此时,①式化为 -y2+2│y│=a.
共分享92篇相关文档