云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > (全国通用版)2020高考数学二轮复习 12+4分项练9 直线与圆 文

(全国通用版)2020高考数学二轮复习 12+4分项练9 直线与圆 文

  • 62 次阅读
  • 3 次下载
  • 2025/6/14 9:14:44

2019年

与平面SBD所成的角相等,故C正确.

10.如图,在直三棱柱ABC-A1B1C1中,已知∠BCA=90°,∠BAC=60°,AC=4,E为AA1的中点,点F为BE的中点,点H在线段CA1上,且A1H=3HC,则线段FH的长为( )

A.23 C.13 答案 C

1

解析 由题意知,AB=8,过点F作FD∥AB交AA1于点D,连接DH,则D为AE中点,FD=AB=4,

2又

B.4 D.3

A1HA1D==3,所以DH∥AC,∠FDH=60°, HCDA34

DH=AC=3,由余弦定理得

FH=42+32-2×4×3×cos 60°=13,故选C.

11.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即

3

立圆径.“开立圆术”相当于给出了已知球的体积V,求其直径d的一个近似公式d≈类似的近似公式,根据π=3.141 59…判断,下列近似公式中最精确的一个是( )

3

16

V,人们还用过一些3

A.d≈

60V 3115V 8

B.d≈2V

21V 11

3

33

C.d≈答案 D

D.d≈44?d?33

解析 根据球的体积公式V=πR=π??,

33?2?

3

得d=

6Va6b,设选项中的常数为,则π=, πba31×6

选项A代入得π==3.1,

606

选项B代入得π==3,

26×8

选项C代入得π==3.2,

15

2019年

11×6

选项D代入得π==3.142 857,

21D选项更接近π的真实值,故选D.

12.已知四边形ABCD为边长等于5的正方形,PA⊥平面ABCD,QC∥PA,且异面直线QD与PA所成的角为30°,则四棱锥Q-ABCD外接球的表面积等于( ) A.

125125125π B.25π C.π D.π 2462

答案 B

解析 因为PA⊥平面ABCD,QC∥PA,

所以QC⊥平面ABCD,且异面直线QD与PA所成的角即∠DQC, 所以∠DQC=30°, 又CD=5,所以QC=15. 由于CB,CQ,CD两两垂直,

所以四棱锥Q-ABCD的外接球的直径就是以CB,CQ,CD为棱的长方体的体对角线,设四棱锥Q-ABCD外接球的半径为R,

5?5?2

则R=,所以外接球的表面积为4π·??=25π.

2?2?

13.如图所示,AB是⊙O的直径,PA⊥⊙O所在的平面,C是圆上一点,且∠ABC=30°,PA=AB,则直线PC与平面ABC所成角的正切值为________.

答案 2

解析 因为PA⊥平面ABC,所以AC为斜线PC在平面ABC上的射影,所以∠PCA即为PC与平面ABC所成的角.在11

Rt△PAC中,AC=AB=PA,

22所以tan∠PCA==2.

14.如图所示,在直三棱柱ABC-A1B1C1中,侧棱AA1⊥平面ABC.若AB=AC=AA1=1,BC=2,则异面直线A1C与

PAACB1C1所成的角为________.

答案 60°

2019年

解析 因为几何体是棱柱,BC∥B1C1,则∠A1CB就是异面直线A1C与B1C1所成的角,在直三棱柱ABC-A1B1C1中,侧棱AA1⊥平面ABC,AB=AC=AA1=1,BC=2,则BA1=AA1+AB=2,CA1=AA1+AC=2,所以△BCA1是正三角形,

故异面直线所成的角为60°.

15.(2018·南昌模拟)已知正三棱台ABC-A1B1C1的上、下底边长分别为33,43,高为7,若该正三棱台的六个顶点均在球O的球面上,且球心O在正三棱台ABC-A1B1C1内,则球O的表面积为________. 答案 100π

解析 因为正三棱台ABC-A1B1C1的上、下底边长分别为33,43, 取正三棱台的上、下底面的中心分别为E,E1, 则正三棱台的高为h=EE1=7,

2

2

2

2

在上下底面的等边三角形中, 22

可得AE=AD=3,A1E1=A1D1=4,

33

则球心O在直线EE1上,且半径为R=OA=OA1, 所以OE+3=OE1+4,且OE+OE1=7, 解得OE=4,所以R=OE+3=5, 所以球O的表面积为S=4πR=100π.

16.已知三棱锥O—ABC中,A,B,C三点均在球心为O的球面上,且AB=BC=1,∠ABC=120°,若球O的体积为

256π

,则三棱锥O—ABC的体积是________. 3

5 4

22

2

2

2

2

2

答案

解析 三棱锥O—ABC中,A,B,C三点均在球心为O的球面上,且AB=BC=1,∠ABC=120°,则AC=3, 1343256π

∴S△ABC=×1×1×sin 120°=,设球半径为R,由球的体积V1=πR=,解得R=4.设△ABC外接圆

24333

的圆心为G,∴外接圆的半径为GA==1,

2sin 120°∴OG=R-GA=4-1=15, ∴三棱锥O —ABC的体积为

2

2

2

2

V2=S△ABC·OG=×

131335×15=. 44

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

2019年 与平面SBD所成的角相等,故C正确. 10.如图,在直三棱柱ABC-A1B1C1中,已知∠BCA=90°,∠BAC=60°,AC=4,E为AA1的中点,点F为BE的中点,点H在线段CA1上,且A1H=3HC,则线段FH的长为( ) A.23 C.13 答案 C 1解析 由题意知,AB=8,过点F作FD∥AB交AA1于点D,连接DH,则D为AE中点,FD=AB=4, 2又B.4 D.3 A1HA1D==3,所以DH∥AC,∠FDH=60°, HCDA34DH=AC=3,由余弦定理得 FH=42+32-2×4×3×cos 60°=13,故选C. 11.我国古代数学名著《九章算术》中“开立圆术”曰:

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com