当前位置:首页 > 第四章流体混合物的热力学性质-习题-解答-
??F(x)dxdlnf211???f2???flim??limf22x2?1?x?x2?1?2???F(x)dxdlnf211??f20?f2x1 ??F(x)dx?lnflnf2112?0x1?和f?(5)已知f12?f根据lnf??xilni来求,xii ??ff即f?exp(x1ln1?x2ln2)x1x2
19.已知甲烷(1)和戊烷(2)的混合物中戊烷的摩尔分数为0.608,混合物的维里系数
B12??106[cm3/mol],B11??24.2[cm3/mol],B22??566[cm3/mol],求90℃,10atm
下戊烷和甲烷的分逸度系数,分逸度和总逸度(用取至第二维里系数的维里方程)
解:?12?2B12?B11?B22?2?(?106)?(?24.2)?(?566)?378.2cm3/mol?3.782?10?4m3/mol10?1013252?6??P(B??2?)?ln?(?24.2?0.608?378.2)?10?0.0388111212RT8.314?(273.15?90)?????1.0396,f??P????Py?1.0396?10???(1?0.608)?4.037atm11111110?1013252??P(B??2?)?ln?(?566?(1?0.608)?378.2)?10?6??0.1704222112RT8.314?(273.15?90)?????0.8433,f??P????Py?0.8433?10?0.608?5.127atm??22222221 / 25word.
???fffi1lnf??xiln?x1ln?x2ln2xix1x24.0735.127?f?exp[(1?0.608)?ln?0.608?ln]?9.152atm(1?0.608)0.608??4.037atm??1.0396,f答:?11??5.127atm??0.8433,f?22f?9.152atm
20.某二元混合物的逸度可以表达为 lnf?2A?2Bx1?2Cx12,其中A,B,C为T,P之函数,试确定
GE(1)若两组分均以Lewis-Randall定则为标准态,求,ln?1,ln?2。
RTGE(2)组分1以亨利定则为标准态,组分2 以Lewis-Randall定则为标准态,求,ln?1,
RTln?2。
???f解:由于ln?i?是lnf?x??i?的偏摩尔性质,由偏摩尔性质的定义知
2?????nlnf???fd2nA?2nB?2n1?11Cn?ln??????dn1?x1???n1?T,P,n2?? 24n1Cn?2n1C2?2A?2B??2A?2B?4x?2x11C2n??同样得到
22?????nlnf???fd2nA?2nB?2nCn2n22?111C?ln??????2A??2A?2x1C?2dn2n?x2???n2?T,P,n1??lnf1?lim?lnf??2A?2B?2C
x1?122 / 25word.
lnf2?lim?lnf??2A
x2?11) 若两组分均以Lewis-Randall定则为标准态
?????f?f21??ln?1??lnf1?2A?2B?4x1?2x1ln?1?ln?C?2A?2B?2C?fx??x??11??1?22?4x1?2x1?2C??2Cx2?????????f?f222??ln?2??lnf2?2A?2x1ln?2?ln?C?2A??2Cx1 ?fx??x??22??2?GE22??x1ln?1?x2ln?2?x14x1?2x1?2C?2x2x1C??2Cx1x2RT??
组分2 以Lewis-Randall定则为标2) 组分1以亨利定则为标准态,准态
?????f?f1??ln?1??lnK1ln??ln??Kx??x??11??1????f1?lnK1?limln??x??2A?2Bx1?0?1??????f?f*1??ln?1??lnK1ln?1?ln??Kx??x? ?11??1?2?2A?2B?4x1?2x1C?2A?2B*12?4x1?2x1???C??????f?f222??2??lnf2?2A?2x1ln?2?ln??lnC?2A??2x1C?fx??x??22??2?23 / 25word.
GE??x1ln?*1?x2ln?2RT由 222?x14x1?2x1C?2x2x1C?2Cx1??
21.在一固定T,P下,测得某二元体系的活度系数值可用下列方程表示:
22 ln?1??x2??x2(3x1?x2)
(a) (b)
ln?2??x12??x12(x1?3x2)
GE试求出的表达式;并问(a),(b) 方程式是否满足Gibbs-Duhem方程?若用(c) , (d)方
RT程式
ln?1?x2(a?bx2) (c) ln?2?x1(a?bx1) (d)
表示该二元体系的活度系数值时,则是否也满足Gibbs-Duhem方程? 解:
GE?x1ln?1?x2ln?2RT?x1???x22??x22?3x1?x2???x2??x12??x12?x1?3x2??
??x1x2??x12x2??x1x22ln?1?ax22?3?x22?4?x23ln?2?ax?3?x?4?x212131
x1dln?1?x2dln?2?x1?2?x2?6?x2?12?x22?dx2?x2?2?x1?6?x1?12?x12?dx1?x1?2?x2?6?x2?12?x22?dx2?x2?2?x1?6?x1?12?x12?dx2??12?x1x2?12?x1x22?12?x12x2?dx2??12?x1x2?12?x1x2?dx2?0所以,满足Gibbs-Duhem方程。
若用(c), (d)式表示,
24 / 25word.
共分享92篇相关文档