当前位置:首页 > 第四章流体混合物的热力学性质-习题-解答-
ij 11 Tcij/K 33.2 Pcij/MPa 1.297 4.246 Vcij/cm3/mol 65.0 203 zcij 0.305 0.281 aij 0.145 18.301 bi 1.84?10?5 22 369.8 ?412 103.05 2.071 121.2 0.293 1.538
a22m?y1a11?2y1y2a12?y2a22?(0.208)2(0.145)?2(0.208)(0.792)(1.538)?0.7922(18.301) ?11.993bm?y1b1?y2b2?(0.208)(1.84?10?5)?(0.792)(1.28?10?4) ?1.052?10?4现在用下列形式的R-K方程计算Z值
Z?1a?1??3?h?hbRT2?1?h?? (1) 式中
h?bbpV?ZRT (2) abRT32?11.9931.052?10?4?8.314?(344.75)32?2.142 bp1.052?10?4(3.7974?106RT?)8.314?344.75?0.139 将(3)(4)式分别带入(1)(2)
Z?11?h?2.142??h??1?h?? (5)h?0.139Z (6)联立(5)(6)
h?0.1552Z?0.8956
V?ZRTp?0.8956?8.314?344.753.7974?106?0.676?10?3m3/mol 17 / 25word.
1.28?10 3) (4) ( V??b1?2(y1a11?y2a12)?V?bm???ln?ln?ln???????1?1.5V?bV?bbRT?V?m??m?m?amb1??V?bm??V???pV??21.5?ln???ln??????bmRT??V??V?bm???RT?????0.676?10?31.84?10?5?ln???3?4???3?4?0.676?10?1.052?10???0.676?10?1.052?10?2(0.208?0.145?0.792?1.538)?0.676?10?3?1.052?10?4??ln??1.052?10?4?8.314?344.751.50.676?10?3????0.676?10?3?1.052?10?4????11.993?1.84?10?50.676?10?3??ln?????3?4??(1.052?10?4)2?8.314?344.751.5??0.676?10?30.676?10?1.052?10?????3.7974?106?0.676?10?3??ln??8.314?344.75???0.2287947??1.335 ?1或者,
利用剑桥大学的Predicting vapour-liquid equilibrium using cubic equations of state网页程序,采用SRK方程计算的结果为:
??1.432 ?116.在473K,5MPa下两气体混合物的逸度系数可用下式表示:ln??y1y2(1?y2)。式中y1,
y2为组分1和2的摩尔分率,试求f1及f2的表达式,并求出当y1=y2=0.5时f1,f2各为
多少?
????ln??y1y2(1?y2)?(1?y2)y2(1?y2)?y2?y23?1?ln??y2ln??2?ln??y1ln?dln??y2?y23?y2(1?3y22)?2y23dy2dln?dy1dln?dy2
?ln??(1?y2)?y2?y23?(1?y2)(1?3y22)?1?3y22?2y23????1?y1?pf1?(1?y2)?5?e2y23
2?0.53?当y2?0.5时,f1?0.5?5?e?3.21(MPa)
18 / 25word.
????2?y2?pf2?y2?5?e1?3y22?2y23
??4.122(MPa) 当y2?0.5时f217.式
?v?f?lfii为气液两相平衡的一个基本限制,试问平衡时下式是否成立?
fl?fv也就是说,当混合系处于平衡时其气相混合物的逸度是否等于液相混合物的逸
度。
vNN?fvvi??解:lnf??yiln??yilnfyilnyi?iyii?1i?1i?1lNNN?fll??lnf??xilni??xilnfxilnxi?ixii?1i?1i?1?v?lnf?l,则根据平衡常数K?y/x即y?Kx和lnfNiiiiii??lnfv??yilnf?yilnyi??(Kxi)lnf?i??KxilnKxiivli?1i?1i?1i?1NNNN?K(?xilnf?i??xilnxi??xilnK)li?1i?1i?1NNN?K(lnf??xilnK)li?1N若K?1则 lnfl?lnfv;即fl?fv只有当K?1即xi=yi共沸点时,才有fl?fv
??50x?80x2?40x3,式18.25℃,20atm下,二元溶液中组分1的分逸度f1可表示为:f1111中f1单位为[atm],x1为组分1的摩尔分数,求:
(1) 纯组分1的逸度f1,逸度系数?1 (2) 组分1的亨利系数K1
(3) 组分1的活度系数?1(以x1为变量函数式,组分1的活度的标准态以
Lewis-Randall定则为准)
(4) 在给定T,P下,如何由f1的表达式确定f2
???19 / 25word.
(5) 已知f1和f2的表达式,如何计算在给定T,P下两组元混合物的f?
???23f50x?80x?40x111解:(1)f1?lim1?lim()?50?80?40?10atmx1x1?1x1x1?1?1?f1/P?10/20?0.523?f50x?80x?40x111(2)k1?lim1?lim()?50?0?0?50atmx1x1?0x1x1?00(3)?fi(LR)?fi0?f1(LR)?f1?10atm 23??ff50x?80x?40x21111?1?1???5?8x?4x110?id?1f1(x?10LR)f11?f(4)方法一:ln(i)为偏摩尔量,由G?D方程得xi???fffi12(xdln)?0 即xdln?xdln?0?i12xix1x2i??xdlnf?-(xdlnx?xdlnx)=0xdlnf11221122dx1dx(x1dlnx1?x2dlnx2)=x1+x22=dx1+dx2=0x1x2??ff1??xdlnf?=0?x1dln?x2dln2?0?x1dlnf122x1x2 ?(4)方法二:dGi?RTlnfix1dG1?x2dG2?0??x(RTdlnf?)?0x(1RTdlnf)i22??xdlnf?=0xdlnf11222?xdlnf50?160x?120x111???1???dlnf?dlnfdx1222x2(1?x1)(50?80x1?40x1)50?160x1?120x12令F(x1)??(1?x1)(50?80x1?40x12)
20 / 25word.
共分享92篇相关文档