当前位置:首页 > 2006年四川省高考数学理科试卷
实验考核合格”为事件B2;“丙实验考核合格”为事件B3;
(Ⅰ)记“理论考核中至少有两人合格”为事件C,记C为C的对立事件 解法1:P?C??P?A1A2A3?A1A2A3?A1A2A3?A1A2A3? ?P?AAA?3?128 ?0.9?0.??P0.?3AAA?123??P1A2A?A3??P1?A 2A3A0?.7 ?00?.9?0.2?0.7?0.?10.?8 ?0.90 2解法2:P?C??1?PC?1?PA1A2A3?A1A2A3?A1A2A3?A1A2A3
?1??PA1A2A3?PA1A2A3?PA1A2A3?PA1A2A3?
???????????????1??0.1?0.2?0.3?0.9?0.2?0.3?0.1?0.8?0.3?0.1?0.2?0.7?
?1?0.098?0.902
所以,理论考核中至少有两人合格的概率为0.902
(Ⅱ)记“三人该课程考核都合格” 为事件D
P?D??P???A1?B1???A2?B2???A3?B3???
?P?A1?B1??P?A2?B2??P?A3?B3?
?P?A1??P?B1??P?A2??P?B2??P?A3??P?B3?
?0.9?0.8?0.8?0.8?0.7?0.9 ?0.254016 ?0.254
所以,这三人该课程考核都合格的概率为0.254
(19)(本大题满分12分)
如图,在长方体ABCD?A1B1C1D1中,E,P分别是BC,A1D1的
中点,M,N分别是AE,CD1的中点,AD?AA1?a,AB?2a (Ⅰ)求证:MN//面ADD1A1; (Ⅱ)求二面角P?AE?D的大小。 (Ⅲ)求三棱锥P?DEN的体积。
本小题主要考察长方体的概念、直线和平面、平面和平面的关系等基础知识,以及
空间想象能力和推理能力。满分12分
解法一:(Ⅰ)证明:取CD的中点K,连结MK,NK
∵M,N,K分别为AK,CD1,CD的中点
∵MK//AD,NK//DD1
∴MK//面ADD1A1,NK//面ADD1A1
(Ⅱ)设F为AD的中点
∴面MNK//面ADD1A1 ∴MN//面ADD1A1
∵P为A1D1的中点 ∴PF//D1D ∴PF?面ABCD
作FH?AE,交AE于H,连结PH,则由三垂线定理得AE?PH
从而?PHF为二面角P?AE?D的平面角。 在Rt?AEF中,AF?a2,EF?2a,AE?172aa,从而FH?AF?EF?2AE?2a172?a2a17
在Rt?PFH中,tan?PFH?PFFH?DD1FH?172
故:二面角P?AE?D的大小为arctan17 2 (Ⅲ)S?NEP?12S矩形ECDP?114BC?CD1?14?a?a?4a?2254a
2作DQ?CD1,交CD1于Q,由A1D1?面CDD1C1得A1C1?DQ ∴DQ?面BCD1A1 ∴在Rt?CDD1中,DQ?CD?DD1CD1?2a?a5a5?2525a
∴VP?DEN?VD?ENP?13S?NEP?DQ?134a?2a?16a
3方法二:以D为原点,DA,DC,DD1所在直线分别为x轴,y轴,z轴,建立直角坐标系,则
A?a,0,0?,B?a,2a,0?,C?0,2a,0?,A1?a,0,a?,D1?0,0,a?
∵E,P,M,N分别是BC,A1D1,AE,CD1的中点 ∴E??a??a??3a?,2a,0?,P?,0,a?,M?,a,0?,N?2??2??4?a?0,a,?2???, ?(Ⅰ)MN??????????34a,0,a?? 2??? 取n??0,1,0?,显然n?面ADD1A1
???????????? MN?n?0,∴MN?n
又MN?面ADD1A1 ∴MN//面ADD1A1
(Ⅱ)过P作PH?AE,交AE于H,取AD的中点F,则F?a??a? 设H?x,y,0?,则HP???x,?y,a,HF?????x,?y,0??2??2??????????a?,0,0?∵ ?2?又AE?????????a?,2a,0? 2??a2a??????????x?2ay?0 由AP?AE?0,及H在直线AE上,可得: ?2?4??4x?y?4a解得x?3334a,y?217a
?????????????????????8a2a2a???????8a∴HP???,?,a?,HF???,?,0? ∴HF?AE?0 即HF?AE
17171717????????????∴HP与HF所夹的角等于二面角P?AE?D的大小 ????????????????HP?HFcosHP,HF??????????HP?HF221
故:二面角P?AE?D的大小为arccos22121
??????????????(Ⅲ)设n1??x1,y1,z1?为平面DEN的法向量,则n1?DE,n1?DN
又DE??????a??????,2a,0?,DN??0,a,2?2???a??????a??,DP??,0,a? ??2??ax1?2ay1?0????x1??4y1?2 ∴? 即 ? ∴可取n1??4,?1,2?
z??2ya?11?2y?z?011??2??????DP?n1 ∴P点到平面DEN的距离为d????n1????????????????DE?DN8 ∵cosDE,DN??????????, sin85DE?DN????????1????????DE?DN?sinDE,DN?2131321822a?2a16?1?4?4a212185
????????DE,DN?
∴S?DEN?218a
2 ∴VP?DEN?S?DEN?d??a?4a21?a36
(20)(本大题满分12分)
已知数列?an?,其中a1?1,a2?3,2an?an?1?an?1?n?2?,记数列?an?的前n项和为Sn,数列?lnSn?的前n项和为Un (Ⅰ)求Un; (Ⅱ)设Fn?x??eUn22n?n!?x2n?x?0?,Tn?x???Fk'?x?,(其中Fk?x?为Fk?x?的导
'nk?1函数),计算lim
Tn?x?Tn?1?x?
n??本小题主要考察等差数列、等比数列的基础知识,以及对数运算、导数运算和极限运
算的能力,同时考查分类讨论的思想方法,满分12分。
解:(Ⅰ)由题意,?an?是首项为1,公差为2的等差数列 前n项和Sn?1?1?2?n?1?22?n?n,lnSn?lnn?2lnn
2Un?2?ln1?ln2???lnn??2ln?n!?
(Ⅱ)Fn?x??eUn22n?n!??x2n??n!?22n?n!?2?x2n?x2n2n Fn?x??x'2n?1
nnTn?x???k?1Fk'?x???xk?12k?1?x?1?x2n???0?x?1?21?x? ???n?x?1??2n?x?1?x??x?1?2?1?x?
共分享92篇相关文档