当前位置:首页 > 1808喷绘机伺服系统设计
太原科技大学毕业设计(论文)
图5-2 伺服驱动器的结构图 伺服驱动器的结构主要包括控制系统和驱动系统
控制系统一般由DSP组成,利用它采集电流反馈值闭合电流环,采集编码器信号算出速度闭合速度环,产生驱动驱动系统的6个开关管的Pwm开关信号。
驱动系统主要由
a.整流滤波电路,比如将220V交流弄成310V左右直流提供给IPM b.智能功率模块(IPM)内部是三相两电平桥电路。每相的上下开关管中间接输出U,V,W。通过6个开关管的开闭,控制UVW三相每个伺服瞬间,是与地连通还是与直流高电压连通。
c.电流采样电路,可能是霍尔电流传感器,电路的输出将与控制系统的AD口相连。
d.编码器的驱动器的输入信号是开关信号,来自操作板的、编码器的。输出信号是数字脉冲给电机的路,它的输出与DSP的事件管理器相连。 5.3.3伺服驱动器控制电路结构:
DSP是整个系统的核心,主要完成实时性要求较高的任务,如矢量控制、电流环、速度环、位置环控制以及PWM信号发生、各种故障保护处理等。 MCU完成实时性要求比较低的管理任务,如参数设定、按键处理、状态显示、串行通讯等。 FPGA实现DSP与 MCU之间的数据交换、外部I/O信号处理、内部I/O信号处理、位置脉冲指令处理、第二编码器计数等。 功率电路采用模块式设计,三相全桥整流部分和交-直-交电压源型逆变器通过公共直流母线连接。三相全桥整流部分由电源模块来实现,为避免上电时出现过大的瞬时电流以及电机制
- 40 -
太原科技大学毕业设计(论文)
动时产生很高的泵升电压,设有软启动电路和能耗泄放电路。逆变器采用智能功率模块来实现。 5.3.4主回路接线:
图5-3 主回路接线图 5.3.5伺服进给系统的要求: 1、调速范围宽 2、定位精度高
3、有足够的传动刚性和高的速度稳定性
4、快速响应,无超调为了保证生产率和加工质量,除了要求有较高的定位精度外还要求有良好的快速响应特性,即要求跟踪指令信号的响应要快,因为数控系统在启动、制动时,要求加、减加速度足够大,缩短进给系统的过渡过程时间,减小轮廓过渡误差。 5、低速大转矩,过载能力强
一般来说,伺服驱动器具有数分钟甚至半小时内1.5倍以上的过载能力,在短时
- 41 -
太原科技大学毕业设计(论文)
间内可以过载4~6倍而不损坏。 6、可靠性高
要求数控机床的进给驱动系统可靠性高、工作稳定性好,具有较强的温度、湿度、振动等环境适应能力和很强的抗干扰的能力。 对电机的要求
1、从最低速到最高速电机都能平稳运转,转矩波动要小,尤其在低速如0.1r/min或更低速时,仍有平稳的速度而无爬行现象。
2、电机应具有大的较长时间的过载能力,以满足低速大转矩的要求。一般直流伺服电机要求在数分钟内过载4~6倍而不损坏。
3、为了满足快速响应的要求,电机应有较小的转动惯量和大的堵转转矩,并具有尽可能小的时间常数和启动电压。
4、电机应能承受频繁启、制动和反转。 5.3.6伺服驱动器的作用:
只根据电机的驱动电路,并不能决定直流电机和交流电机的位置。另外,虽然电机的机理上具备了速度控制性,但是因为负载和摩擦,旋转速度会随之变化。 伺服控制器的作用是,即便在负载变动和摩擦变动的系统中,也能使电机运转在目标位置或者目标旋转速度上。 5.3.7伺服驱动器控制方式:
一般伺服都有三种控制方式:位置控制方式,转矩控制方式,速度控制方式。 位置控制:
位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。应用领域如数控机床、印刷机械等等。 转矩控制:
转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10V对应5Nm的话,当外部模拟量设定
- 42 -
太原科技大学毕业设计(论文)
为5V时电机轴输出为2.5Nm:如果电机轴负载低于2.5Nm时电机正转,外部负载等于2.5Nm时电机不转,大于2.5Nm时电机反转(通常在有重力负载情况下产生)。可以通过即时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。
应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的设定要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化而改变。 速度模式:
通过模拟量的输入或脉冲的频率都可以进行转动速度的控制,在有上位控制装置的外环PID控制时速度模式也可以进行定位,但必须把电机的位置信号或直接负载的位置信号给上位反馈以做运算用。位置模式也支持直接负载外环检测位置信号,此时的电机轴端的编码器只检测电机转速,位置信号就由直接的最终负载端的检测装置来提供了,这样的优点在于可以减少中间传动过程中的误差,增加了整个系统的定位精度。 三环控制:
伺服一般为三个环控制,所谓三环就是3个闭环负反馈PID调节系统。最内的PID环就是电流环,此环完全在伺服驱动器内部进行,通过霍尔装置检测驱动器给电机的各相的输出电流,负反馈给电流的设定进行PID调节,从而达到输出电流尽量接近等于设定电流,电流环就是控制电机转矩的,所以在转矩模式下驱动器的运算最小,动态响应最快。
第2环是速度环,通过检测的电机编码器的信号来进行负反馈PID调节,它的环内PID输出直接就是电流环的设定,所以速度环控制时就包含了速度环和电流环,换句话说任何模式都必须使用电流环,电流环是控制的根本,在速度和位置控制的同时系统实际也在进行电流(转矩)的控制以达到对速度和位置的相应控制。
第3环是位置环,它是最外环,可以在驱动器和电机编码器间构建也可以在外部控制器和电机编码器或最终负载间构建,要根据实际情况来定。由于位置控制环内部输出就是速度环的设定,位置控制模式下系统进行了所有3个环的运算,此时的系统运算量最大,动态响应速度也最慢。
- 43 -
共分享92篇相关文档