当前位置:首页 > 2019-2020年高考数学一轮复习专题17同角三角函数的基本关系与诱导公式教学案文
∴sin α=-55
. 答案 A
3.1-2sin(π+2)cos(π-2)=( ) A.sin 2-cos 2
B.sin 2+cos 2 C.±(sin 2-cos 2)
D.cos 2-sin 2
解析
1-2sin(π+2)cos(π-2)=1-2sin 2cos 2
=(sin 2-cos 2)2
=|sin 2-cos 2|=sin 2-cos 2. 答案 A
4.向量a=??1?3,tan α???,b=(cos α,1),且a∥b,则cos??π?2+α???
=( A.-1 B.1
2
33
C.- D.-223
3
答案 A 5. cos?
?π?12-θ???=13,则sin??5π?12+θ???
=( )
A.1
3 B.22
3
C.-1
D.-2233
解析 sin??5π?+θ??=sin??π-?π?12??
2??12-θ
?????
=cos?
?π?12-θ???
=13
. 答案 A
6.已知tan α=3,则1+2sin αcos αsin2α-cos2
α的值是( ) A.12 B.2 C.-1
2
D.-2 )
答案 B 7.已知sin α=
55
,则sin4α-cos4
α的值为( ) A.-15 B.-35 C.15
D.35
解析 sin4α-cos4α=sin2α-cos2α=2sin2
α-1=-35.
答案 B
8.已知函数f(x)=asin(πx+α)+bcos(πx+β),且f(4)=3,则f(2 017)的值为( A.-1 B.1
C.3 D.-3
解析 ∵f(4)=asin(4π+α)+bcos(4π+β) =asin α+bcos β=3,
∴f(2 017)=asin(2 017π+α)+bcos(2 017π+β) =asin(π+α)+bcos(π+β) =-asin α-bcos β =-3. 答案 D
9.已知sin(π+θ)=-3cos(2π-θ),|θ|<π
2,则θ等于( )
A.-π6 B.-π3
C.π
6
D.π3
解析 ∵sin(π+θ)=-3cos(2π-θ), ∴-sin θ=-3cos θ,
∴tan θ=3,∵|θ|<ππ
2,∴θ=3.
答案 D
10.若sin θ,cos θ是方程4x2
+2mx+m=0的两根,则m的值为( )
) A.1+5 B.1-5 D.-1-5
C.1±5
答案 B
?π?3?π?11.已知α为钝角,sin?+α?=,则sin?-α?=________. ?4?4?4?
7?π?解析 因为α为钝角,所以cos?+α?=-,
4?4?
7?π?π???π??π?所以sin?-α?=cos?-?-α??=cos?+α?=-.
4???4??4??2?4答案 -
7
4
2
sin(α+π)·cos(π+α
12.化简:
3?π
tan(π+α)·sin?+α
?2
2
)·cos(-α-2π)
=________.
?·sin(-α-2π)?
?
sinα·(-cos α)·cos αsinαcosα
解析 原式===1. 322
tan α·cosα·(-sin α)sinαcosα答案 1
13.sin1°+sin2°+…+sin90°=________.
解析 sin1°+sin2°+…+sin90°=sin1°+sin2°+…+sin44°+sin45°+cos44°+cos43°+…+cos1°+sin90°=(sin1°+cos1°)+(sin2°+cos2°)1912222
+…+(sin44°+cos44°)+sin45°+sin90°=44++1=.
22答案
91
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
22
?π??5π??2π?14.已知cos?-θ?=a,则cos?+θ?+sin?-θ?=________. ?6??6??3?
答案 0
共分享92篇相关文档