云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 2016年江苏省南京市江宁区中考数学一模试卷

2016年江苏省南京市江宁区中考数学一模试卷

  • 62 次阅读
  • 3 次下载
  • 2025/6/25 15:31:59

【分析】(1)过点B 作BH⊥x轴于点H,在Rt△AOB中,∠AOB=60°,OA=8,所以OB=OA=4,再利用勾股定理求出OH、BH,即可解答;

(2)分两种情况:Ⅰ当点B在第一象限时(如图2),过点B作BM⊥OC于点M;Ⅱ当点B在第二象限时(如图3),过点B作 BE⊥x轴于E,过点A作AF⊥BE于H;分别求出点A、B的坐标,利用待定系数法求解析式,即可解答;

(3)分三种情况:Ⅰ当0°<β<45°时(如图4);Ⅱ当45°<β<75°时(如图5);Ⅲ当75°<β<180°时,分三种情况解答:①FA=FG,②AF=AG,③GA=GF;根据等腰三角形的性质,角之间的和与差,即可解答. 【解答】解:(1)如图1,过点B 作BH⊥x轴于点H,

在Rt△AOB中,∠AOB=60°,OA=8 ∴OB=OA=4

当β=45°时,即∠BOC=45°, ∴OH=BH, ∴OH2+BH2=42

第29页(共34页)

∴OH=BH=2∴B(

, )

(2)Ⅰ当点B在第一象限时(如图2),过点B作BM⊥OC于点M,

∵∠BOD=60°, ∴∠BOC=30°, ∴OM=∴B(2

,2)

,BM=OB

∵点A在y轴上 ∴A(0,8),

设直线AB的解析式为y=kx+b, ∴解得:

∴直线AB的解析式为:y=﹣x+8;

Ⅱ当点B在第二象限时,(如图3)

第30页(共34页)

过点B作 BE⊥x轴于E,过点A作AF⊥BE于H ∵∠BOD=60°, ∴∠BOE=30°, ∴∠EB0=60°, ∴∠ABH=30°, 又∵OB=4, ∴OE=∴B(﹣2

,2),

,BE=OB

∵∠BEO=∠AHB=90°,∠ABH=∠BOE, ∴△OBE∽△BAH ∴∴AH=2∴A(﹣4

,BH=6 ,﹣4)

设直线AB的解析式为y=kx+b, ∴解得:

∴直线AB的解析式为:y=x+8.

(3)Ⅰ当0°<β<45°时(如图4),

第31页(共34页)

∠AGF为钝角, 当GA=GF时, ∴∠A=∠AFG=30°, ∴∠OGC=60°, 又∵∠GCO=45°,

∴∠GOC=180°﹣60°﹣45°=75°, ∴β=∠BOC=75°﹣60°=15°. Ⅱ当45°<β<75°时(如图5),

∠GAF为钝角, 当AF=AG时,

∴∠AGF=∠AFG=∠OAB=15°, ∴∠GOC=180°﹣15°﹣45°=120°, ∴β=∠BOC=120°﹣60°=60°, Ⅲ当75°<β<180°时

第32页(共34页)

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

【分析】(1)过点B 作BH⊥x轴于点H,在Rt△AOB中,∠AOB=60°,OA=8,所以OB=OA=4,再利用勾股定理求出OH、BH,即可解答; (2)分两种情况:Ⅰ当点B在第一象限时(如图2),过点B作BM⊥OC于点M;Ⅱ当点B在第二象限时(如图3),过点B作 BE⊥x轴于E,过点A作AF⊥BE于H;分别求出点A、B的坐标,利用待定系数法求解析式,即可解答; (3)分三种情况:Ⅰ当0°<β<45°时(如图4);Ⅱ当45°<β<75°时(如图5);Ⅲ当75°<β<180°时,分三种情况解答:①FA=FG,②AF=AG,③GA=GF;根据等腰三角形的性质,角之间的和与差,即可解答. 【解答】解:(1)如图1,过点B 作BH⊥x轴于点H, 在Rt△AOB中,∠AOB=60°,OA=8 ∴OB=O

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com